1
|
Yu G, Lin S, Huang X, Gao S, Song C, Khalilov F, Chen Q, Issaro N, Xiao J, Xu X, Wang J, Zhao W, Wang Y, Xu N. Expression of an epidermal growth factor-transdermal peptide fusion protein in Arabidopsis thaliana and its therapeutic effects on skin barrier repair. FRONTIERS IN PLANT SCIENCE 2025; 16:1573193. [PMID: 40256601 PMCID: PMC12007040 DOI: 10.3389/fpls.2025.1573193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Epidermal growth factor (EGF) is recognized for its role in regulating keratinocyte proliferation and differentiation, thereby facilitating the restoration of impaired skin barriers. Nevertheless, challenges related to the penetration and safety of EGF remain to be resolved. In this study, we evaluated the efficacy of TDP1, a transdermal peptide, in enhancing the penetration of EGF through murine skin, utilizing EGF expressed in A. thaliana. The coding sequences of the TDP1 and EGF genes were cloned as a fusion construct into a plant expression vector. The resulting plasmid, pGM3301-TDP1-EGF, was introduced into A. thaliana via the floral dip method. Positive clones were identified using polymerase chain reaction (PCR). High-expression strains were selected through Western-blot analysis and enzyme-linked immunosorbent assay (ELISA). Homozygotes plants were obtained through self-pollination. The impact of the TDP1-EGF fusion protein on the restoration of a compromised epidermal barrier was assessed using dermatoscopy. Keratinocyte (KC) proliferation was examined via hematoxylin and eosin (H&E) staining, while KC differentiation, lipid synthesis, and inflammatory factors were analyzed using reverse transcription quantitative PCR (RT-qPCR) and immunohistochemistry. Compared to other expression systems, the A. thaliana system utilized for TDP1-EGF expression offers the advantages of being devoid of toxicity from endogenous plant substances, rendering it both safe and suitable for scalable production of the recombinant protein. The yield of the TDP1-EGF fusion protein expressed in A. thaliana accounted for 0.0166% of the total soluble protein. EGF conjugated with TDP1 displayed enhanced transdermal activity compared to unconjugated EGF, as evidenced by the Franz diffusion cell assay. Furthermore, the biological efficacy of the TDP1-EGF fusion protein surpassed that of EGF alone in ameliorating epidermal barrier damage in a murine skin injury model. This research has the potential to revolutionize the development and delivery of skincare products and establishes a foundation for the application of molecular farming in skin health.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Xulong Huang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd, Wenzhou, China
| | - Chengyang Song
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Farid Khalilov
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Qiongzhen Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nipatha Issaro
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Chonburi, Thailand
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Junchao Wang
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd., Wenzhou, China
| |
Collapse
|
2
|
He A, Liu B, Hua Y, Gong Z, Gan F, Zhou Q, Wang S, Zhao X. Clinical Study of Intradermal Injection of Non-Crosslinked Sodium Hyaluronate Combined With Human Epidermal Growth Factor in the Treatment of Skin Barrier Injury in Plateau Area. J Cosmet Dermatol 2025; 24:e16727. [PMID: 39717991 PMCID: PMC11837232 DOI: 10.1111/jocd.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The Yunnan-Guizhou Plateau's high-altitude setting is characterized by intense solar ultraviolet radiation, a significant environmental stressor that frequently leads to skin barrier damage. This damage presents clinically as erythema, itching, and desquamation, underscoring the need for effective reparative interventions. AIMS The objective of this study was to assess the therapeutic efficacy of a novel treatment protocol that integrates non-crosslinked hyaluronic acid (HA) injection with microneedle application of human epidermal growth factor (hEGF) for the restoration of skin barrier function in regions of high altitude. METHODS Sixty female subjects exhibiting characteristic signs of skin barrier impairment were randomized into four cohorts: a control group and three experimental groups differentiated by hEGF concentration. The intervention comprised subdermal HA injection coupled with microneedle therapy. The VISIA digital skin analysis system was utilized to quantify skin barrier integrity, with assessments performed by a panel of dermatologists and through patient self-evaluations at baseline and postintervention. RESULTS A marked reduction in erythema and indices of skin barrier damage was observed in the experimental groups relative to the control. The cohort administered 10 000 IU hEGF exhibited the most pronounced restoration of skin barrier function, indicative of a dose-dependent therapeutic response. The treatment demonstrated favorable tolerability without any reported adverse events. CONCLUSIONS The conjoint application of non-crosslinked HA and hEGF presents as a potent therapeutic modality for the repair of the skin barrier in high-altitude environments. Our findings indicate that an optimized concentration of hEGF is pivotal for achieving the most efficacious treatment outcomes.
Collapse
Affiliation(s)
- Ao He
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| | - Boyan Liu
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| | - Yingjian Hua
- Department of Medical CosmetologyKunming University of Science and Technology Affiliated Pu'er HospitalPu'erYunnanChina
| | - Zhuo Gong
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| | - Fengshan Gan
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| | - Qingzhu Zhou
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| | - Songmei Wang
- School of Public HealthKunming Medical UniversityKunmingYunnanChina
| | - Xian Zhao
- Department of Plastic SurgeryAffiliated Calmette Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
3
|
Martínez-Carpio PA. Human recombinant EGF as a drug. Med Clin (Barc) 2023; 161:318-319. [PMID: 37524585 DOI: 10.1016/j.medcli.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 08/02/2023]
|
4
|
Ousey K, Rippon MG, Rogers AA, Totty JP. Considerations for an ideal post-surgical wound dressing aligned with antimicrobial stewardship objectives: a scoping review. J Wound Care 2023; 32:334-347. [PMID: 37300859 DOI: 10.12968/jowc.2023.32.6.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Most surgical wounds heal by primary or secondary intention. Surgical wounds can present specific and unique challenges including wound dehiscence and surgical site infection (SSI), either of which can increase risk of morbidity and mortality. The use of antimicrobials to treat infection in these wounds is prevalent, but there is now an imperative to align treatment with reducing antimicrobial resistance and antimicrobial stewardship (AMS). The aim of this review was to explore the published evidence identifying general considerations/criteria for an ideal post-surgical wound dressing in terms of overcoming potential wound healing challenges (including infection) while supporting AMS objectives. METHOD A scoping review examining evidence published from 1954-2021, conducted by two authors acting independently. Results were synthesised narratively and have been reported in line with PRISMA Extension for Scoping Reviews. RESULTS A total of 819 articles were initially identified and subsequently filtered to 178 for inclusion in the assessment. The search highlighted six key outcomes of interest associated with post-surgical wound dressings: wound infection; wound healing; physical attributes related to comfort, conformability and flexibility; fluid handling (e.g., blood and exudate); pain; and skin damage. CONCLUSION There are several challenges that can be overcome when treating a post-surgical wound with a dressing, not least the prevention and treatment of SSIs. However, it is imperative that the use of antimicrobial wound dressings is aligned with AMS programmes and alternatives to active antimicrobials investigated.
Collapse
Affiliation(s)
- Karen Ousey
- Professor Skin Integrity, Director for the Institute of Skin Integrity, and Infection Prevention, University of Huddersfield, UK
- Department of Nursing and Midwifery, Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia
- Visiting Professor, Royal College of Surgeons of Ireland, Ireland
- Chair, International Wound Infection Institute UK
- President Elect, International Skin Tear Advisory Panel, US
| | - Mark G Rippon
- Visiting Clinical Research Associate, Huddersfield University, Huddersfield, UK
- Consultant, Dane River Consultancy Ltd, Cheshire, UK
| | - Alan A Rogers
- Independent Wound Care Consultant, Flintshire, North Wales, UK
| | - Joshua P Totty
- NIHR Clinical Lecturer in Plastic Surgery, Hull York Medical School, UK
| |
Collapse
|
5
|
Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration. J Biol Eng 2023; 17:11. [PMID: 36759827 PMCID: PMC9912508 DOI: 10.1186/s13036-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic disease can cause tissue and organ damage constituting the largest obstacle to therapy which, in turn, reduces patients' quality-adjusted life-year. Degenerative diseases such as osteoporosis, Alzheimer's disease, Parkinson's disease, and infectious conditions such as hepatitis, cause physical injury to organs. Moreover, damage resulting from chronic conditions such as diabetes can also culminate in the loss of organ function. In these cases, organ transplantation constitutes the therapy of choice, despite the associated problems of immunological rejection, potential disease transmission, and high morbidity rates. Tissue regeneration has the potential to heal or replace tissues and organs damaged by age, disease, or trauma, as well as to treat disabilities. Stem cell use represents an unprecedented strategy for these therapies. However, product availability and mass production remain challenges. A novel therapeutic alternative involving amniotic mesenchymal stem cell metabolite products (AMSC-MP) has been developed using metabolites from stem cells which contain cytokines and growth factors. Its potential role in regenerative therapy has recently been explored, enabling broad pharmacological applications including various gastrointestinal, lung, bladder and renal conditions, as well as the treatment of bone wounds, regeneration and skin aging due to its low immunogenicity and anti-inflammatory effects. The various kinds of growth factors present in AMSC-MP, namely bFGF, VEGF, TGF-β, EGF and KGF, have their respective functions and activities. Each growth factor is formed by different proteins resulting in molecules with various physicochemical properties and levels of stability. This knowledge will assist in the manufacture and application of AMSC-MP as a therapeutic agent.
Collapse
|
6
|
Wang Y, Fan J, Wei Z, Xing S. Efficient expression of fusion human epidermal growth factor in tobacco chloroplasts. BMC Biotechnol 2023; 23:1. [PMID: 36611158 PMCID: PMC9824920 DOI: 10.1186/s12896-022-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chloroplast transformation is a robust technology for the expression of recombinant proteins. Various types of pharmaceutical proteins including growth factors have been reported in chloroplasts via chloroplast transformation approach at high expression levels. However, high expression of epidermal growth factor (EGF) in chloroplasts with the technology is still unavailable. RESULTS The present work explored the high-level expression of recombinant EGF, a protein widely applied in many clinical therapies, in tobacco chloroplasts. In this work, homoplastic transgenic plants expressing fusion protein GFP-EGF, which was composed of GFP and EGF via a linker, were generated. The expression of GFP-EGF was confirmed by the combination of green fluorescent observation and Western blotting. The achieved accumulation of the recombinant fusion GFP-EGF was 10.21 ± 0.27% of total soluble proteins (1.57 ± 0.05 g kg- 1 of fresh leaf). The chloroplast-derived GFP-EGF was capable of increasing the cell viability of the NSLC cell line A549 and enhancing the phosphorylation level of the EGF receptor in the A549 cells. CONCLUSION The expression of recombinant EGF in tobacco chloroplasts via chloroplast transformation method was achieved at considerable accumulation level. The attempt gives a good example for the application of chloroplast transformation technology in recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Yunpeng Wang
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Jieying Fan
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Zhengyi Wei
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China ,grid.452720.60000 0004 0415 7259Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Shaochen Xing
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| |
Collapse
|
7
|
Tansathien K, Suriyaamporn P, Ngawhirunpat T, Opanasopit P, Rangsimawong W. A Novel Approach for Skin Regeneration by a Potent Bioactive Placental-Loaded Microneedle Patch: Comparative Study of Deer, Goat, and Porcine Placentas. Pharmaceutics 2022; 14:pharmaceutics14061221. [PMID: 35745793 PMCID: PMC9229957 DOI: 10.3390/pharmaceutics14061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The aims of this study were to investigate the skin regeneration potential of bioactive placenta (deer placenta (DP), goat placenta (GP), and porcine placenta (PP)) and fabricate bioactive extract-loaded dissolving microneedles (DMNs) as a dermal delivery approach. The placentas were water-extracted, and the active compounds were evaluated. Bioactivity studies were performed in dermal fibroblasts and keratinocytes. DMNs were fabricated to deliver the potent bioactive placenta extract into the skin. All placental extracts expressed high amounts of protein, growth factors (EGF, FGF, IGF-1 and TGF-β1), and amino acids. These extracts were not toxic to the skin cells, while the proliferation of fibroblast cells significantly increased in a time-dependent manner. GP extract that exhibited the maximum proliferation, migration, and regeneration effect on fibroblast cells was loaded into DMN patch. The suitable physical properties of DMNs led to increased skin permeation and deposition of bioactive macromolecules. Moreover, GP extract-loaded DMNs showed minimal invasiveness to the skin and were safe for application to human skin. In conclusion, placental extracts act as potent bioactive compounds for skin cells, and the highest bioactive potential of GP-loaded DMNs might be a novel approach to regenerate the skin.
Collapse
Affiliation(s)
- Kritsanaporn Tansathien
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Correspondence: ; Tel.: +66-(045)-353605; Fax: +66-(045)-353626
| |
Collapse
|
8
|
Gong X, Yao H, Wu J. Sodium hyaluronate combined with rhEGF contributes to alleviate clinical symptoms and Inflammation in patients with Xerophthalmia after cataract surgery. BMC Ophthalmol 2022; 22:58. [PMID: 35130850 PMCID: PMC8822791 DOI: 10.1186/s12886-022-02275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background To determine the effect of sodium hyaluronate combined with recombinant human epidermal growth factor (rhEGF) on clinical symptoms and inflammation in patients with newly diagnosed xerophthalmia after cataract surgery. Methods A total of 106 patients who underwent cataract surgery and were newly diagnosed with xerophthalmia in our hospital between June 2018 and August 2019 were enrolled. Of these, 50 patients who were treated with sodium hyaluronate (0.1%) were assigned to the monotherapy group (MG) and the remaining 56 patients who were treated with sodium hyaluronate (0.1%) combined with rhEGF (20 μg/ml) were assigned to the combination group (CG). The 2 groups were compared based on ocular surface disease index (OSDI) score, break-up time (BUT), fluorescein corneal staining level, Schirmer I test (SI) level, clinical efficacy (disappearance of typical symptoms, including eyes drying, burning sensation, foreign body sensation, etc), and interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α) levels. Spearman correlation analysis was conducted to analyze the relationship between IL-1, IL-6, TNF-α and clinical efficacy. In addition, receiver operating characteristic curves were drawn to analyze the predictive value of IL-1, IL-6, and TNF-α in efficacy on xerophthalmia. Results: After treatment, the CG showed reduced OSDI score compared with the MG. The CG showed increased BUT (s) and SI (mm) levels compared with MG. After treatment, the CG exhibited decreased levels of IL-1(ng/mL), IL-6 (ng/mL), and TNF-α (ng/mL) compared with the MG. Spearman correlation analysis revealed that IL-1, IL-6, and TNF-α were negatively correlated with clinical efficacy. The areas under the curves of IL-1, IL-6, and TNF-α were 0.801, 0.800, and 0.736 respectively. Conclusions Sodium hyaluronate combined with rhEGF is helpful to alleviate clinical symptoms and inflammation in patients with xerophthalmia undergoing cataract surgery.
Collapse
Affiliation(s)
- Xuewu Gong
- Ophthalmology Department, The Second Affiliated Hospital of Qiqihar Medical University, No.37, Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang, China
| | - Hongbo Yao
- School of Basic Medicine of Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Jing Wu
- Ophthalmology Department, The Second Affiliated Hospital of Qiqihar Medical University, No.37, Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
9
|
Wattanakrai P, Sindhusen S, Ploydaeng M. Effectiveness of an epidermal growth factor‐containing cream on postinflammatory hyperpigmentation after 1064‐nm Q‐switched neodymium‐doped yttrium aluminum garnet laser treatment of acquired bilateral nevus of Ota‐like macules (Hori's nevus) in Asians: A split‐face, double‐blinded, randomized controlled study. J Cosmet Dermatol 2022; 21:2031-2037. [DOI: 10.1111/jocd.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Penpun Wattanakrai
- Ramathibodi Laser Center Division of Dermatology Department of Internal Medicine Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| | - Sasipaka Sindhusen
- Ramathibodi Laser Center Division of Dermatology Department of Internal Medicine Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| | - Monthanat Ploydaeng
- Ramathibodi Laser Center Division of Dermatology Department of Internal Medicine Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| |
Collapse
|
10
|
Miller-Kobisher B, Suárez-Vega DV, Velazco de Maldonado GJ. Epidermal Growth Factor in Aesthetics and Regenerative Medicine: Systematic Review. J Cutan Aesthet Surg 2021; 14:137-146. [PMID: 34566354 PMCID: PMC8423211 DOI: 10.4103/jcas.jcas_25_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction: Epidermal Growth Factor (rhEGF) is a promising skin antiaging agent that successfully promotes skin wound repair, and it has been investigated in the past decade for these purposes. However, there are no updated systematic reviews, in English or English, that support the efficacy of rhEGF as a regenerative skin treatment or systematic reviews that compile the uses of rhEGF as facial aesthetic therapy and regenerative medicine. Aim: To describe the current state of facial aesthetic and regenerative medicine treatments in which rhEGF has been effectively used. Materials and Methods: An exhaustive search was carried out in “Medline” (via “PubMed”), “Cochrane,” “Bireme” through the Virtual Health Library (VHL), “Elsevier” via “Science Direct,” “Springer,” “SciELo,” “ResearchGate,” and Google Scholar. Studies related to the use of rhEGF in addressing skin disorders or skin aging are included. Results: Overall, 49 articles were found, which described the use of rhEGF for skin regeneration and restructuring. Efficacy in the regeneration of skin wounds was verified through the intradermal and topical application of formulations with rhEGF. Most clinical trials in aesthetics point to an effective inversion of skin aging. However, uncontrolled or randomized trials abound, so that does not represent enough evidence to establish its efficiency. There are transient adverse effects for both cases. Conclusion: The rhEGF considers an effective therapeutic alternative for patients with recalcitrant skin wounds and skin aging, as it is a potent and specific mitogenic factor for the skin.
Collapse
Affiliation(s)
| | - Dubraska V Suárez-Vega
- Department of Investigation, Dental Research Center, University of Los Andes (ULA), Mérida, Venezuela
| | | |
Collapse
|
11
|
Asiri A, Saidin S, Sani MH, Al-Ashwal RH. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci Rep 2021; 11:5634. [PMID: 33707606 PMCID: PMC7970974 DOI: 10.1038/s41598-021-85149-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
Collapse
Affiliation(s)
- Amnah Asiri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Syafiqah Saidin
- IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Mohd Helmi Sani
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Rania Hussien Al-Ashwal
- Department of Clinical Sciences, School of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
- Advanced Diagnostics and Progressive Human Care (Diagnostic) Research Group, Health and Wellness Research Alliance, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
12
|
Surini S, Leonyza A, Suh CW. Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Adv Pharm Bull 2020; 10:586-594. [PMID: 33072536 PMCID: PMC7539322 DOI: 10.34172/apb.2020.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Recombinant human epidermal growth factor (rhEGF) is a 6045-Da peptide that promotes the cell growth process, and it is also used for cosmetic purposes as an anti-aging compound. However, its penetration into skin is limited by its large molecular size. This study aimed to prepare rhEGF-loaded transfersomal emulgel with enhanced skin penetration compared with that of non-transfersomal rhEGF emulgel. Methods: Three transfersome formulations were prepared with different ratios between the lipid vesicle (phospholipid and surfactant) and rhEGF (200:1, 133:1, and 100:1) using a thin-film hydration-extrusion method. The physicochemical properties of these transfersomes and the percutaneous delivery of the transfersomal emulgel were evaluated. Long-term and accelerated stability studies were also conducted. Results: The 200:1 ratio of lipid to drug was optimal for rhEGF-loaded transfersomes, which had a particle size of 128.1 ± 0.66 nm, polydispersity index of 0.109 ± 0.004, zeta potential of -43.1 ± 1.07 mV, deformability index of 1.254 ± 0.02, and entrapment efficiency of 97.77% ± 0.09%. Transmission electron microscopy revealed that the transfersomes had spherical and unilamellar vesicles. The skin penetration of rhEGF was enhanced by as much as 5.56 fold by transfersomal emulgel compared with that of non-transfersomal emulgel. The stability study illustrated that the rhEGF levels after 3 months were 84.96-105.73 and 54.45%-66.13% at storage conditions of 2°C-8°C and 25°C ± 2°C/RH 60% ± 5%, respectively. Conclusion: The emulgel preparation containing transfersomes enhanced rhEGF penetration into the skin, and skin penetration was improved by increasing the lipid content.
Collapse
Affiliation(s)
- Silvia Surini
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Astried Leonyza
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Chang Woo Suh
- PT Daewoong Pharmaceutical Company Indonesia, Jakarta 10230, Indonesia
| |
Collapse
|
13
|
de Oliveira BGRB, de Oliveira FP, Teixeira LA, de Paula GR, de Oliveira BC, Pires BMFB. Epidermal growth factor vs platelet-rich plasma: Activity against chronic wound microbiota. Int Wound J 2019; 16:1408-1415. [PMID: 31571388 PMCID: PMC7949375 DOI: 10.1111/iwj.13205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 01/09/2023] Open
Abstract
The objective was to evaluate Staphylococcus aureus and Pseudomonas aeruginosa colonisation of wounds treated with recombinant epidermal growth factor (EGF) and platelet-rich plasma (PRP); to analyse the susceptibility profiles of S. aureus and P. aeruginosa isolates from wounds treated with EGF and PRP; and to describe the presence of infection in EGF-treated and PRP-treated wounds. Experimental study was performed using clinical specimens collected with swabs. Patients were treated with PRP and EGF in the outpatient clinic of a university hospital. Forty-three isolates were obtained from 31 patients, 41.9% (13/31) of whom had been treated with EGF and 58.0% (18/31) with PRP. Ten of the 43 isolates were identified as S. aureus, 60.0% (6/10) of which were isolated from PRP-treated wounds. Among the 33 P. aeruginosa isolates, 66.6% (22/33) were isolated from PRP-treated wounds. Regarding antimicrobial susceptibility, only one strain isolated from an EGF-treated wound was identified as methicillin-resistant S. aureus (MRSA). Among the P. aeruginosa isolates, one obtained from a patient treated with EGF was multidrug-resistant. Patients treated with EGF had no infections during the follow-up period, and there was a significant difference between the 1st and 12th week in wound infection improvement in patients treated with PRP (P = .0078).
Collapse
|
14
|
|
15
|
Esquirol-Caussa J, Herrero-Vila E. Human recombinant epidermal growth factor in skin lesions: 77 cases in EPItelizando project. J DERMATOL TREAT 2018; 30:96-101. [DOI: 10.1080/09546634.2018.1468546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jordi Esquirol-Caussa
- Centro Médico Teknon, Barcelona, Spain
- Servei Universitari de Recerca en Fisioteràpia (SURF), Escoles Universitàries Gimbernat (adscrites a la Universitat Autònoma de Barcelona), Barcelona, Spain
| | - Elisabeth Herrero-Vila
- Centro Médico Teknon, Barcelona, Spain
- Servei de Medicina Preventiva, Àptima, Terrassa, Barcelona, Spain
| |
Collapse
|
16
|
Liao JL, Zhong S, Wang SH, Liu JY, Chen J, He G, He B, Xu JQ, Liang ZH, Mei T, Wu S, Cao K, Zhou JD. Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing. Exp Ther Med 2017; 14:2341-2348. [PMID: 28962165 DOI: 10.3892/etm.2017.4752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
Wound dressings with drug delivery system have drawn increasing attention in skin damage recombination. Herein, a novel composite biological dressing was prepared and based on poly(vinyl alcohol) (PVA) combined with carbon nanotubes (CNTs) and epidermal growth factor (EGF) by electrospinning on gauze. The properties of the CNTs/PVA/EGF composite dressing were systemically investigated by general observation, and scanning electron microscopy (SEM). In vitro, the cytotoxicity of this dressing was investigated using a methyl thiazolyl tetrazolium (MTT) assay on L929 fibroblasts. In order to study the sustained release of EGF from this dressing, the concentration of EGF at different times was tested by ELISA. Furthermore, the biological activity of the released EGF was also evaluated using the MTT assay. Moreover, an in vivo experiment was conducted to observe whether this dressing was capable of improving healing in the model of wounded skin on rats. It was revealed that this dressing had a well-distributed microstructure by SEM. Additionally, the grade of cytotoxicity was low, and the EGF had a sustained release rate from this dressing. Furthermore, a maximum accumulative release rate of 12.47% was identified at 12 h, and was retained at 9.4% after 48 h. Simultaneously, the relative growth rate of L929 fibroblasts in the 12 h experimental group and 48 h group was 291.24 and 211.3%, respectively. Next, the efficacy of these products was evaluated in vivo using Sprague-Dawley rats with a skin injury model. The healing of wounded skin of rats was sped up by this dressing based on the gross and histological appearances. From 7 to 10 days, the wounds in the experimental group were almost healed. In conclusion, this CNTs/PVA/EGF dressing had a well-distributed structure and an ability to release EGF at a sustained rate with the activity being favorable. On the basis of those results, a positive influence of designed dressing for accelerated wound healing was confirmed.
Collapse
Affiliation(s)
- Jun-Lin Liao
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shi Zhong
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shao-Hua Wang
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jin-Yan Liu
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gu He
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bin He
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Burn and Plastic Surgery, Ningxiang People's Hospital, Ningxiang, Hunan 410600, P.R. China
| | - Jia-Qin Xu
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Burn and Plastic Surgery, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Zun-Hong Liang
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Burn and Plastic Surgery, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Tao Mei
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Burn and Plastic Surgery, The First People's Hospital of Changde, Changde, Hunan 415003, P.R. China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jian-Da Zhou
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
17
|
Esquirol Caussa J, Herrero Vila E. Un enfoque para el tratamiento de las úlceras de origen vascular: revisión y papel del factor de crecimiento epidérmico. ANGIOLOGIA 2016. [DOI: 10.1016/j.angio.2015.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|