1
|
Korbecki J, Bosiacki M, Pilarczyk M, Kot M, Defort P, Walaszek I, Chlubek D, Baranowska-Bosiacka I. The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target. Cancers (Basel) 2025; 17:1674. [PMID: 40427171 PMCID: PMC12110541 DOI: 10.3390/cancers17101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Marcin Kot
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Piotr Defort
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Ireneusz Walaszek
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
2
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
3
|
Chen X, Hu K, Zhang Y, He SM, Wang DD. CXCR2 Activated JAK3/STAT3 Signaling Pathway Exacerbating Hepatotoxicity Associated with Tacrolimus. Drug Des Devel Ther 2024; 18:6331-6344. [PMID: 39749191 PMCID: PMC11693940 DOI: 10.2147/dddt.s496195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Purpose Tacrolimus could induce hepatotoxicity during clinical use, and the mechanism was still unclear, which posed new challenge for the prevention and treatment of tacrolimus-induced hepatotoxicity. The aim of this study was to investigate the mechanism of tacrolimus-induced hepatotoxicity and provide reference for drug development target. Methods In this study, biochemical analysis, pathological staining, immunofluorescent staining, immunohistochemical staining, transcriptomic analysis, Western blotting was used to investigate the mechanism of tacrolimus-induced hepatotoxicity in gene knockout mice and Wistar rats. Results In gene knockout mice, compared to wild-type mice, CXCR2-deficiency alleviated tacrolimus-induced hepatotoxicity (P < 0.05 or P < 0.01). In Wistar rats, compared to control group, CXCL2-CXCR2, JAK3/STAT3 signaling pathway (phosphorylation of JAK3 and STAT3) were up-regulated, the expression of CIS was lowered and the expression of PIM1 was raised, inducing liver pathological change (P < 0.05 or P < 0.01); Inversely, blocking CXCR2 could reverse the expression of p-JAK3/p-STAT3 and tacrolimus-induced hepatotoxicity (P < 0.05 or P < 0.01). Conclusion CXCR2 activated JAK3/STAT3 signaling pathway (phosphorylation of JAK3 and STAT3) exacerbating hepatotoxicity associated with tacrolimus, meanwhile the expression of CIS was down-regulated, the expression of PIM1 was up-regulated. Blocking CXCR2 could reverse the expression of p-JAK3/p-STAT3, CIS, PIM1, and tacrolimus-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yue Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, People’s Republic of China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| |
Collapse
|
4
|
McClelland S, Maxwell PJ, Branco C, Barry ST, Eberlein C, LaBonte MJ. Targeting IL-8 and Its Receptors in Prostate Cancer: Inflammation, Stress Response, and Treatment Resistance. Cancers (Basel) 2024; 16:2797. [PMID: 39199570 PMCID: PMC11352248 DOI: 10.3390/cancers16162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
Collapse
Affiliation(s)
- Shauna McClelland
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Pamela J. Maxwell
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Cristina Branco
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Simon T. Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| |
Collapse
|
5
|
Hosoki K, Govindhan A, Knight JM, Sur S. Allosteric inhibition of CXCR1 and CXCR2 abrogates Th2/Th17-associated Allergic Lung Inflammation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593638. [PMID: 38798651 PMCID: PMC11118468 DOI: 10.1101/2024.05.13.593638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background IL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported. Methods Mice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined. Results Allergen challenge in sensitized mice increased mRNA expression levels of Il4, Il5, Il13, Il6, Il1β, Tgfβ1, Il17, Il23, Gata3, and Rorc , and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells. Conclusion Allosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.
Collapse
|
6
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
7
|
Stott LA, la Rochelle AD, Brown S, Osborne G, Hutchings CJ, Poulter S, Bennett KA, Barnes M. The Neutrophil Dynamic Mass Redistribution Assay as a Medium throughput Primary Cell Screening Assay. J Pharmacol Exp Ther 2024; 389:19-31. [PMID: 37863490 DOI: 10.1124/jpet.123.001787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/22/2023] Open
Abstract
In a typical G protein coupled receptor drug discovery campaign, an in vitro primary functional screening assay is often established in a recombinant system overexpressing the target of interest, which offers advantages with respect to overall throughput and robustness of compound testing. Subsequently, compounds are then progressed into more physiologically relevant but lower throughput ex vivo primary cell assays and finally in vivo studies. Here we describe a dynamic mass redistribution (DMR) assay that has been developed in a format suitable to support medium throughput drug screening in primary human neutrophils. Neutrophils are known to express both CXC chemokine receptor (CXCR) 1 and CXCR2 that are thought to play significant roles in various inflammatory disorders and cancer. Using multiple relevant chemokine ligands and a range of selective and nonselective small and large molecule antagonists that block CXCR1 and CXCR2 responses, we demonstrate distinct pharmacological profiles in neutrophil DMR from those observed in recombinant assays but predictive of activity in neutrophil chemotaxis and CD11b upregulation, a validated target engagement marker previously used in clinical studies of CXCR2 antagonists. The primary human neutrophil DMR cell system is highly reproducible, robust, and less prone to donor variability observed in CD11b and chemotaxis assays and thus provides a unique, more physiologically relevant, and higher throughput assay to support drug discovery and translation to early clinical trials. SIGNIFICANCE STATEMENT: Neutrophil dynamic mass redistribution assays provide a higher throughput screening assay to profile compounds in primary cells earlier in the screening cascade enabling a higher level of confidence in progressing the development of compounds toward the clinic. This is particularly important for chemokine receptors where redundancy contributes to a lack of correlation between recombinant screening assays and primary cells, with the coexpression of related receptors confounding results.
Collapse
Affiliation(s)
- Lisa A Stott
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Armand Drieu la Rochelle
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Susan Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Greg Osborne
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Catherine J Hutchings
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Simon Poulter
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Kirstie A Bennett
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| | - Matt Barnes
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
| |
Collapse
|
8
|
Zhao P, Sun L, Zhao C. TCF1/LEF1 triggers Wnt-dependent chemokine/cytokine-induced inflammation and cadherin pathways to drive T-ALL cell migration. Biochem Biophys Rep 2023; 34:101457. [PMID: 36942321 PMCID: PMC10024088 DOI: 10.1016/j.bbrep.2023.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive hematologic malignancy. It progresses quickly and it is likely to be fatal within a few months without treatment. Despite the limitations of current clinical therapies, there is an urgent need for novel and targeted therapies. To explore potential targeted therapies, molecular genetic mechanisms of T-ALL metastasis must be uncovered. However, the genes and mechanisms that mediate T-ALL metastasis are largely unknown. Recent insights into T-ALL biology have identified several genes that can be grouped into several targetable signaling pathways. The Wnt/β-catenin signaling pathway is one of the most important pathways. Our work investigated the functions of TCF1 and LEF1 in cell growth and migration mediated by the Wnt signaling pathway. We found that TCF1 and LEF1 knockdown weakly repressed T-ALL cell proliferation but distinctly impaired cell migration. T-ALL metastasis is dependent on cell migration and invasion. Our results displayed that TCF1 and LEF1 regulated T-ALL cell migration by the Wnt-dependent chemokine and cytokine-induced inflammation and cadherin signaling pathways. By transcriptionally regulating these pathways-associated genes, TCF1 and LEF1 inhibited cell adhesion and promoted cell migration and invasion.
Collapse
Affiliation(s)
- Pin Zhao
- Department of Clinical Laboratory, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, 29th Bulan Road, Longgang District, Shenzhen, 518112, China
- Corresponding author.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, 100068, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, 100068, China
| |
Collapse
|
9
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers D, Liu Q, Liu X, Boothby M, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529548. [PMID: 36865260 PMCID: PMC9980137 DOI: 10.1101/2023.02.22.529548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. Methods To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven Braf V600E /Pten -/- /Cxcr2 -/- and NRas Q61R /INK4a -/- /Cxcr2 -/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in Braf V600E /Pten -/- and NRas Q61R /INK4a -/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). Results Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1 , a key tumor suppressive transcription factor, was the only gene significantly induced with a log 2 fold-change greater than 2 in these three different melanoma models. Conclusions Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
10
|
Liu H, Gao H, Chen C, Jia W, Xu D, Jiang G. IDO Inhibitor and Gallic Acid Cross-Linked Small Molecule Drug Synergistic Treatment of Melanoma. Front Oncol 2022; 12:904229. [PMID: 35875081 PMCID: PMC9303008 DOI: 10.3389/fonc.2022.904229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we synthesized a molecule GA-1MT (GM) composed of indoleamine 2,3-dioxygenase (IDO) inhibitor (1-methyl-d-tryptophan, 1MT) called NLG8189 and gallic acid (GA) and verified its therapeutic effect on B16F10 melanoma cells and an orthotopic tumor-bearing mouse model. The synthesized molecule GM was analyzed by 1H NMR and mass spectrometry (MS). In addition, we confirmed that GM could mediate the immune response in the B16F10 cell tumor model by flow cytometry and immunofluorescence. The synthesized GM molecule could increase the solubility of 1MT to enhance the drug efficacy and lower costs. Moreover, GM could inhibit melanoma growth by combining 1MT and GA. In vivo experiments showed that GM could effectively inhibit the expression of tyrosinase, regulate the proportion of CD4+ T cells, CD8+ T cells, and regulatory T cells (Treg cells) in tumors, and significantly suppress melanoma growth. The newly synthesized drug GM could more effectively inhibit melanoma than GA and 1MT alone or in combination.
Collapse
Affiliation(s)
- Hongmei Liu
- Xuzhou Medical University, Xuzhou, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Gao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyu Jia
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Delong Xu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
11
|
Design, Synthesis and Biological Activity Testing of Library of Sphk1 Inhibitors. Molecules 2022; 27:molecules27062020. [PMID: 35335379 PMCID: PMC8951126 DOI: 10.3390/molecules27062020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Our team discovered a moderate SphK1 inhibitor, SAMS10 (IC50 = 9.8 μM), which was screened by computer-assisted screening. In this study, we developed a series of novel diaryl derivatives with improved antiproliferative activities by modifying the structure of the lead compound SAMS10. A total of 50 new compounds were synthesized. Among these compounds, the most potent compound, named CHJ04022Rb, has significant anticancer activity in melanoma A375 cell line (IC50 = 2.95 μM). Further underlying mechanism studies indicated that CHJ04022R exhibited inhibition effect against PI3K/NF-κB signaling pathways, inhibited the migration of A375 cells, promoted apoptosis and exerted antiproliferative effect by inducing G2/M phase arrest in A375 cells. Furthermore, acute toxicity experiment indicated CHJ04022R exhibited good safety in vivo. Additionally, it showed a dose-dependent inhibitory effect on the growth of xenograft tumor in nude mice. Therefore, CHJ04022R may be a potential candidate for the treatment of melanoma.
Collapse
|
12
|
Almajali B, Johan MF, Al-Wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-Tawarah NM, Ibrahim WN, Al-Rawashde FA, Al-Jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15030307. [PMID: 35337104 PMCID: PMC8948818 DOI: 10.3390/ph15030307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Nafe M. Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar;
| | - Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
13
|
Zhao Z, Peng H, Han T, Jiang Z, Yuan J, Liu X, Wang X, Zhang Y, Wang T. Pharmacological characterization and biological function of the interleukin-8 receptor, CXCR2, in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:441-450. [PMID: 34933090 DOI: 10.1016/j.fsi.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Interleukin-8 (IL-8 or C-X-C motif chemokine ligand 8, CXCL8) is a cytokine secreted by numerous cell types and is best known for its functional roles in inflammatory response by binding to specific receptors (the interleukin-8 receptors, IL-8Rs). From the transcriptomic data of largemouth bass (Micropterus salmoides), we identified an IL-8R that is highly homologous to the functionally validated teleost IL-8Rs. The M. salmoides IL-8 receptor (MsCXCR2) was further compared with the C-X-C motif chemokine receptor 2 subfamily by phylogenetic analysis. Briefly, the full-length CDS sequence of MsCXCR2 was cloned into the pEGFP-N1 plasmid, and the membrane localization of fusion expressing MsCXCR2-EGFP was revealed in HEK293 cells. To determine the functional interaction between IL-8 and MsCXCR2, secretory expressed Larimichthys crocea IL-8 (LcIL-8) was used to stimulate MsCXCR2 expressing cells. MsCXCR2 was demonstrated to be activated by LcIL-8, leading to receptor internalization, which was further revealed by the detection of extracellular regulated protein kinase (ERK) phosphorylation. Quantitative real-time PCR was used to evaluate the expressional distribution and variation of MsCXCR2 in healthy and Nocardia seriolae infected fish. Based on our findings, MsCXCR2 was constitutively expressed in all examined tissues, despite at different levels. Furthermore, gene expression was found to be significantly upregulated in the liver and head kidney of diseased fish. Collectively, our findings reveal the molecular activity of MsCXCR2 and indicate the functional involvement of this IL-8R in the immune response induced by N. seriolae in M. salmoides.
Collapse
Affiliation(s)
- Zihao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, Shandong, 273155, PR China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xue Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xiaoqian Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yuexing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| |
Collapse
|
14
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
15
|
Zhang X, Luo J, Li Q, Xin Q, Ye L, Zhu Q, Shi Z, Zhan F, Chu B, Liu Z, Jiang Y. Design, synthesis and anti-tumor evaluation of 1,2,4-triazol-3-one derivatives and pyridazinone derivatives as novel CXCR2 antagonists. Eur J Med Chem 2021; 226:113812. [PMID: 34536673 DOI: 10.1016/j.ejmech.2021.113812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
Chemokine receptor 2 (CXCR2) is the receptor of glutamic acid-leucine-arginine sequence-contained chemokines CXCs (ELR+ CXCs). In recent years, CXCR2-target treatment strategy has come a long way in cancer therapy. CXCR2 antagonists could block CXCLs/CXCR2 axis, and are widely used in regulating immune cell migration, tumor metastasis, apoptosis and angiogenesis. Herein, two series of new CXCR2 small-molecule inhibitors, including 1,2,4-triazol-3-one derivatives 1-11 and pyridazinone derivatives 12-22 were designed and synthesized based on the proof-to-concept. The pyridazinone derivative 18 exhibited good CXCR2 antagonistic activity (69.4 ± 10.5 %Inh at 10 μM) and demonstrated its significant anticancer metastasis activity in MDA-MB-231 cells and remarkable anti-angiogenesis activity in HUVECs. Furthermore, noteworthy was that 18 exhibited an obvious synergistic effect with Sorafenib in anti-proliferation assay in MDA-MB-231 cells. Moreover, 18 showed a distinct reduction of the phosphorylation levels of both PI3K and AKT proteins in MDA-MB-231 cells, and also affected the expression levels of other PI3K/AKT signaling pathway-associated proteins. The molecular docking studies of 18 with CXCR2 also verified the rationality of our design strategy. All of these results revealed pyridazinone derivative 18 as a promising CXCR2 antagonist for future cancer therapy.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Jingyi Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qilei Xin
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Lizhen Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qingyun Zhu
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhichao Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Zhan
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Bizhu Chu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zijian Liu
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518057, PR China
| | - Yuyang Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China.
| |
Collapse
|
16
|
CXCR1 correlates to poor outcomes of EGFR-TKI against advanced non-small cell lung cancer by activating chemokine and JAK/STAT pathway. Pulm Pharmacol Ther 2021; 67:102001. [PMID: 33582208 DOI: 10.1016/j.pupt.2021.102001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE CXCR1, a member of the seven-transmembrane chemokine receptor family, promotes cell proliferation and metastasis in many tumors. The present study was undertaken to explore the interrelation between CXCR1 expression and the prognosis of advanced non-small cell lung cancer (NSCLC) in addition to the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma (LUAD). METHODS The expression of CXCR1 in NSCLC tissues was assessed by immunohistochemistry. The relationships between CXCR1 expression and clinical-pathological factors were investigated. Concomitantly, the relationship between CXCR1 expression and EGFR-TKI treatment efficacy was investigated. Gene set enrichment analysis (GSEA) was employed for the exploration of pathway enrichment, tumor immune estimation resource (TIMER) and gene expression profiling interactive analysis (GEPIA) for the inspection of the interrelationship between infiltration immune cells and CXCR1. After gain-and loss-of-function of CXCR1 in NSCLC cells, qRT-PCR and Western blot were applied to measure the levels of proteins associated with the chemokine pathway (CCL3 and CXCL2) and the JAK/STAT pathway (IL9R, PIAS4 and STAT5A). RESULTS CXCR1 significantly correlated with poor prognosis of NSCLC patients. Additionally, CXCR1 limited the clinical efficacy of EGFR-TKIs in advanced LUAD (P = 0.029). In the tumor microenvironment, CXCR1 was positively associated with infiltration levels of immune markers in lung squamous cell carcinoma (LUSC) and LUAD. High expression of CXCR1 was implicated in the NOD-like receptor (NLR), cytokine/cytokine receptor, JAK/STAT and chemokine signaling pathways in LUAD and LUSC. Overexpression of CXCR1 in NSCLC cell lines enhanced expressions of CCL3, CXCL2, IL9R, PIAS4 and STAT5A, while knockdown of CXCR1 repressed expressions of CCL3, CXCL2, IL9R, PIAS4 and STAT5A. CONCLUSION CXCR1 is correlated with poor prognosis of NSCLC and affects the efficacy of EGFR-TKIs in LUAD.
Collapse
|
17
|
Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells. Molecules 2020; 25:molecules25173895. [PMID: 32859054 PMCID: PMC7503592 DOI: 10.3390/molecules25173895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Human malignant melanoma is the most aggressive type of skin cancer with high metastatic ability. Despite several traditional therapies, the mortality rate remains high. Lactobacillus plantarum (L. plantarum), a species of lactic acid bacteria (LAB), is being studied for human health, including cancer treatment. However, few studies have elucidated the relationship between L. plantarum extract and human malignant melanoma. To investigate the effects of L. plantarum on human melanoma cells, A375 human melanoma cells were used and treated with L. plantarum L-14 extract. After the treatment, viability, migration ability, molecular changes of migration- and apoptosis-related genes, and the location of cytochrome c was evaluated. The L-14 extract inhibited the viability, migration of A375 cells as well as reduced expression of migration-related genes. In addition, it was confirmed that the L-14 extract induced intrinsic apoptosis in A375 cells. This study demonstrated that the L-14 extract exerted anticancer effects on A375 cells. Therefore, these data suggest that the L-14 extract is worth studying for the development of melanoma drugs using LAB.
Collapse
|
18
|
Ji C, Li Y, Yang K, Gao Y, Sha Y, Xiao D, Liang X, Cheng Z. Identification of four genes associated with cutaneous metastatic melanoma. Open Med (Wars) 2020; 15:531-539. [PMID: 33336008 PMCID: PMC7712158 DOI: 10.1515/med-2020-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cutaneous melanoma is an aggressive cancer with increasing incidence and mortality rates worldwide. Metastasis is one of the primary elements that influence the prognosis of patients with cutaneous melanoma. This study aims to clarify the potential mechanism underlying the low survival rate of metastatic melanoma and to search for novel target genes to improve the survival rate of patients with metastatic tumors. Methods Gene expression dataset and clinical data were downloaded from The Cancer Genome Atlas portal. Differentially expressed genes (DEGs) were identified, and their functions were studied through gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Survival and multivariate Cox regression analyses were used to screen out candidate genes that could affect the prognosis of patients with metastatic melanoma. Results After a series of comprehensive statistical analysis, 464 DEGs were identified between primary tumor tissues and metastatic tissues. Survival and multivariate Cox regression analyses revealed four vital genes, namely, POU2AF1, ITGAL, CXCR2P1, and MZB1, that affect the prognosis of patients with metastatic melanoma. Conclusion This study provides a new direction for studying the pathogenesis of metastatic melanoma. The genes related to cutaneous metastatic melanoma that affect the overall survival time of patients were identified.
Collapse
Affiliation(s)
- Chen Ji
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yuming Li
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Kai Yang
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yanwei Gao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yan Sha
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Dong Xiao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Xiaohong Liang
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Zhongqin Cheng
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| |
Collapse
|
19
|
Lee HH, Chin A, Pak K, Wasserman SI, Kurabi A, Ryan AF. Role of the PI3K/AKT pathway and PTEN in otitis media. Exp Cell Res 2020; 387:111758. [PMID: 31837294 PMCID: PMC7824983 DOI: 10.1016/j.yexcr.2019.111758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Mucosal hyperplasia is common sequela of otitis media (OM), leading to the secretion of mucus and the recruitment of leukocytes. However, the pathogenic mechanisms underlying hyperplasia are not well defined. Here, we investigated the role of the AKT pathway in the development of middle mucosal hyperplasia using in vitro mucosal explants cultures and an in vivo rat model. The Akt inhibitor MK2206 treatment inhibited the growth of middle ear mucosal explants in a dose-dependent manner. In vivo, MK2206 also reduced mucosal hyperplasia. Unexpectedly, while PTEN is generally thought to act in opposition to AKT, the PTEN inhibitor BPV reduced mucosal explant growth in vitro. The results indicate that both AKT and PTEN are mediators of mucosal growth during OM, and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Hwan Ho Lee
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Anthony Chin
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Stephen I Wasserman
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Xun Y, Yang H, Li J, Wu F, Liu F. CXC Chemokine Receptors in the Tumor Microenvironment and an Update of Antagonist Development. Rev Physiol Biochem Pharmacol 2020; 178:1-40. [PMID: 32816229 DOI: 10.1007/112_2020_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemokine receptors, a diverse group within the seven-transmembrane G protein-coupled receptor superfamily, are frequently overexpressed in malignant tumors. Ligand binding activates multiple downstream signal transduction cascades that drive tumor growth and metastasis, resulting in poor clinical outcome. These receptors are thus considered promising targets for anti-tumor therapy. This article reviews recent studies on the expression and function of CXC chemokine receptors in various tumor microenvironments and recent developments in cancer therapy using CXC chemokine receptor antagonists.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Jiekai Li
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
21
|
Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead. Eur J Med Chem 2019; 185:111853. [PMID: 31732253 DOI: 10.1016/j.ejmech.2019.111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Immune suppression in the tumor microenvironment (TME) is an intractable issue in anti-cancer immunotherapy. The chemokine receptors CXCR1 and CXCR2 recruit immune suppressive cells such as the myeloid derived suppressor cells (MDSCs) to the TME. Therefore, CXCR1/2 antagonists have aroused pharmaceutical interest in recent years. In this review, the medicinal chemistry of CXCR1/2 antagonists and their relevance in cancer immunotherapy have been summarized. The development of the drug candidates, along with their design rationale, clinical status and current challenges have also been discussed.
Collapse
|
22
|
Liu G, An L, Zhang H, Du P, Sheng Y. Activation of CXCL6/CXCR1/2 Axis Promotes the Growth and Metastasis of Osteosarcoma Cells in vitro and in vivo. Front Pharmacol 2019; 10:307. [PMID: 30984000 PMCID: PMC6447780 DOI: 10.3389/fphar.2019.00307] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is a malignant primary bone tumor with high metastatic rate. C-X-C motif chemokine ligand 6 (CXCL6) and its receptor C-X-C motif chemokine receptor 1/2 (CXCR1/2) have been found to participate in the process of carcinogenesis. In this study, we evaluated the role of CXCL6/CXCR1/2 axis in proliferation and metastasis of OS cells. According to our results, the mRNA and protein expressions of CXCL6, CXCR1, and CXCR2 in multiple OS cell lines were determined. Treatment with exogenous CXCL6 for more than 72 h significantly promoted the proliferation of OS cells. Blocking the effect of endogenous CXCL6 restrained the migration, invasion and epithelial-mesenchymal transition (EMT) as evidenced by increased E-cadherin level, decreased N-cadherin and Snail levels in OS cells. On the contrary, exogenous CXCL6 administration enhanced the migration and invasive abilities of OS cells. Moreover, silencing of CXCR1/2 suppressed migration, invasion and EMT of OS cells with or without treatment with exogenous CXCL6. In addition, exogenous CXCL6 promoted the activation of PI3K/AKT and β-catenin signaling pathways, which could be repressed by CXCR2 knockdown. Inactivation of PI3K/AKT or β-catenin pathway by specific inhibitors effectively suppressed CXCL6-induced migration, invasion and EMT of OS cells. Finally, overexpression of CXCL6 significantly contributed to tumor growth, pulmonary metastasis and activation of PI3K/AKT and β-catenin pathways in nude mice in vivo, which were repressed by treatment with CXCR2 antagonist. Our results suggest that CXCL6/CXCR1/2 axis promotes the proliferation and metastasis of OS cells.
Collapse
Affiliation(s)
- Guangchen Liu
- Department of Traumatic Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liping An
- College of Pharmacy, Beihua University, Jilin, China
| | - Hongmei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Peige Du
- College of Pharmacy, Beihua University, Jilin, China
| | - Yu Sheng
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|