1
|
Väisänen A, Hoikkala N, Härkönen V, Moritz N, Vallittu PK. Biomechanical considerations of semi-anatomic glass fiber-reinforced (GFRC) composite implant for mandibular segmental defects: A technical note. J Mech Behav Biomed Mater 2024; 156:106604. [PMID: 38810543 DOI: 10.1016/j.jmbbm.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the selected biomechanical properties of semi-anatomic implant plate made of biostable glass fiber-reinforced composite (GFRC) for mandibular reconstruction. Two versions of GFRC plates were tested in vitro loading conditions of a mandible segmental defect model, for determining the level of mechanical stress at the location of fixation screws, and in the body of the plate. METHODS GFRC of bidirectional S3-glass fiber weaves with dimethacrylate resin matrix were used to fabricate semi-anatomic reconstruction plates of two GFRC laminate thicknesses. Lateral surface of the plate followed the contour of the resected part of the bone, and the medial surface was concave allowing for placement of a microvascular bone flap in the next stages of the research. Plates were fixed with screws to a plastic model of the mandible with a large segmental defect in the premolar-molar region. The mandible-plate system was loaded from incisal and molar locations with loads of 10, 50, and 100 N and stress (microstrain, με) at the location of fixation screws and the body of the plate was measured by strain gauges. In total the test set-up had four areas for measuring the stress of the plate. RESULTS No signs of fractures or buckling failures of the plates were found during loading. Strain values at the region of the fixation screws were higher with thick plate, whereas thin plates demonstrated higher strain at the body of the plate. Vertical displacement of the mandible-plate system was proportional to the loading force and was higher with incisal than molar loading locations but no difference was found between thin and thick plates. CONCLUSION GFRC plates withstood the loading conditions up to 100 N even when loaded incisally. Thick plates concentrated the stress to the ramus mandibulae region of the fixation screws whereas the thin plates showed stress concentration in the angulus mandibulae region of the fixation and the plate itself. In general, thin plates caused a lower magnitude of stress to the fixation screw areas than thick plates, suggesting absorption of the loading energy to the body of the plate.
Collapse
Affiliation(s)
- Antti Väisänen
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland.
| | - Niko Hoikkala
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Ville Härkönen
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Niko Moritz
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Finland; Wellbeing Services, County of South-West Finland, Turku, Finland
| |
Collapse
|
2
|
Kawcher Alam M, Sahadat Hossain M, Anisur Rahman Dayan M, Bahadur NM, Shaikh MAA, Ahmed S. Fabrication and Characterization of a Bioscaffold Using Hydroxyapatite and Unsaturated Polyester Resin. ACS OMEGA 2024; 9:15210-15221. [PMID: 38585056 PMCID: PMC10993257 DOI: 10.1021/acsomega.3c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Outstanding biodegradability and biocompatibility are attributes associated with particular polyester substances that make this group useful in specific biomedical fields. To assess the potential as a biomaterial, a novel composite consisting of hydroxyapatite (HAp) and unsaturated polyester resin (UPR) was developed in this work. Using a hand-lay-up technique, various percentages (50, 40, 30, 20, and 10%) of HAp were reinforced into the UPR matrix to fabricate composite materials out of glass sheets. Prior to processing of the composite samples, hydroxyapatite was chemically synthesized in a wet chemical manner. Using a universal testing machine (UTM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA), the fabricated samples were characterized. The crystallographic parameters of synthesized hydroxyapatite (HAp) were also estimated through a range of formulas. The optimal amount for hydroxyapatite was 40% according to the findings of the tensile strength (TS), tensile modulus (TM), percentage of elongation at break (EB), bending strength (BS), and bending modulus (BM). Improvements in TS, TM, BS, and BM for the ideal combination were 39.39, 9.21, 912.05, and 259.96%, in each case, over the controlled one. Thermogravimetric analysis (TGA) has been implemented to determine the degradation temperature of the fabricated composites up to 600 °C.
Collapse
Affiliation(s)
- Md. Kawcher Alam
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- Department
of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Sahadat Hossain
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
| | - Md. Anisur Rahman Dayan
- Textile
Physics Division, Bangladesh Jute Research
Institute, Manik Mia
Avenue, Dhaka 1207, Bangladesh
| | - Newaz Mohammed Bahadur
- Department
of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Aftab Ali Shaikh
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samina Ahmed
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- BCSIR
Dhaka Laboratories, Bangladesh Council of
Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
3
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
4
|
Moritz N, Liesmäki O, Plyusnin A, Keränen P, Kulkova J. Load-bearing composite fracture-fixation devices with tailored fibre placement for toy-breed dogs. Res Vet Sci 2023; 156:66-80. [PMID: 36791579 DOI: 10.1016/j.rvsc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Fibre reinforced composites are attractive materials for hard tissue reconstructions, due to the high strength and low flexural modulus. However, lack of contourability in the operation theatre inhibits their clinical applications. The study presents a novel in situ contourable composite implant system for load-bearing conditions. The implant system consists of a thin bioresorbable shell with several cavities, much like bubble-wrap. The central cavity contains a semi-flexible glass fibre preform prepared using Tailored Fibre Placement method. The preform is either pre-impregnated with a light curable resin, or the resin is injected into the cavity during the surgical procedure, followed by light curing. The semi-flexible glass fibre preforms were also examined as separate devices, "miniplates". Two types of miniplates were scrutinized, a simplified pilot design and a spatially refined, "optimized" design. The optimized miniplates were implemented as biostable and bioresorbable versions. The feasibility of the in situ contourable composite implant system was demonstrated. The potential of Tailored Fibre Placement for the semi-flexible glass fibre preforms and miniplates was confirmed in a series of biomechanical tests. However, structural optimization is required. Antebrachial fractures in toy-breeds of dogs are exemplar veterinary applications of the devices; further applications in veterinary and human patients are foreseen.
Collapse
Affiliation(s)
- Niko Moritz
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Oliver Liesmäki
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Artem Plyusnin
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Pauli Keränen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Julia Kulkova
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland.
| |
Collapse
|
5
|
Nesabi M, Valanezhad A, Safaee S, Odatsu T, Abe S, Watanabe I. A novel multi-structural reinforced treatment on Ti implant utilizing a combination of alkali solution and bioactive glass sol. J Mech Behav Biomed Mater 2021; 124:104837. [PMID: 34601434 DOI: 10.1016/j.jmbbm.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Alkali treatment and bioactive glass (BG) sol dip-coating are well-known individual methods for titanium (Ti) surface modification. In this study, a unique combination of alkali treatment and bioactive glass sol dip coating was applied to the Ti substrate, then the mechanical properties and cell responses were investigated. METHODS Based on the methods introduced above, the Ti substrate was treated by 6 mL of an NaOH 5 M aqueous solution for 24 h at 60 ̊C; this was followed by adding 1.2 mL of a BG 58S sol to form a novel combined nanostructure network covered by a thin BG layer. For the assessment of the formed coating layer, the morphology, elemental analysis, phase structure, adhesion property and the cell response of the untreated and treated surfaces were investigated. RESULTS The BG coating layer was reinforced by the nanostructure, fabricated through the alkali treatment. The results obtained by applying the combined modification method confirmed that the mechanical and biological properties of the fabricated surface demonstrated the highest performance compared to that of the unmodified and individually modified surfaces. SIGNIFICANCE The achieved upgrades for this method could be gained from the demanded porous nanostructure and the apatite transformation ability of the alkali treatment. Therefore, the hybridized application of the alkali-BG treatment could be introduced as a promising surface modification strategy for hard-tissue replacement applications.
Collapse
Affiliation(s)
- Mahdis Nesabi
- Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Alireza Valanezhad
- Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| | - Sirus Safaee
- Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Shigeaki Abe
- Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Ikuya Watanabe
- Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| |
Collapse
|
6
|
Diabb Zavala JM, Leija Gutiérrez HM, Segura-Cárdenas E, Mamidi N, Morales-Avalos R, Villela-Castrejón J, Elías-Zúñiga A. Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. J Mech Behav Biomed Mater 2021; 120:104554. [PMID: 33932864 DOI: 10.1016/j.jmbbm.2021.104554] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
This article focuses on obtaining ultra high molecular weight polyethylene (UHMWPE) material reinforced with functionalized single-walled carbon nanotubes (f-SWCNTs) and the manufacturing of unicompartmental knee implants via Single-Point Incremental Forming process (SPIF). The physicochemical properties of the developed UHMWPE reinforced with 0.01 and 0.1 wt% concentrations of f-SWCNTs are investigated using Raman and Thermogravimetic Analysis (TGA). Tensile mechanical tests performed in the nanocomposite material samples reveal a 12% improvement in their Young's modulus when compare to that of the pure UHMWPE material samples. Furthermore, the surface biocompatibility of the UHMWPE reinforced with f-SWCNTs materials samples was evaluated with human osteoblast cells. Results show cell viability enhancement with good cell growth and differentiation after 14 incubation days, that validates the usefulness of the developed nanocomposite material in the production of hip and knee artificial implants, and other biomedical applications.
Collapse
Affiliation(s)
- José M Diabb Zavala
- Universidad Autónoma de Nuevo León, FIME. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, NL, Mexico
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, CICFM-FCFM. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, NL, Mexico.
| | - Emmanuel Segura-Cárdenas
- Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P., 64849, Monterrey, Nuevo León, Mexico
| | - Narsimha Mamidi
- Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P., 64849, Monterrey, Nuevo León, Mexico
| | - Rodolfo Morales-Avalos
- Department of Orthopedic Surgery and Traumatology, University Hospital, Dr. José Eleuterio González", Universidad Autónoma de Nuevo Leon, Monterrey, Mexico
| | - Javier Villela-Castrejón
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, N.L., C.P, 64849, Mexico
| | - Alex Elías-Zúñiga
- Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P., 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
7
|
Plyusnin A, He J, Elschner C, Nakamura M, Kulkova J, Spickenheuer A, Scheffler C, Lassila LVJ, Moritz N. A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates. Molecules 2021; 26:molecules26051256. [PMID: 33652632 PMCID: PMC7956420 DOI: 10.3390/molecules26051256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/04/2022] Open
Abstract
The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates.
Collapse
Affiliation(s)
- Artem Plyusnin
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Cindy Elschner
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland;
| | - Julia Kulkova
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
- Correspondence: ; Tel.: +358-44-974-91-83
| | - Axel Spickenheuer
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Christina Scheffler
- Leibniz-Institut für Polymerforschung Dresden e. V., D-01005 Dresden, Germany; (C.E.); (A.S.); (C.S.)
| | - Lippo V. J. Lassila
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| | - Niko Moritz
- Turku Clinical Biomaterials Centre—TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland; (A.P.); (L.V.J.L.); (N.M.)
| |
Collapse
|
8
|
Charlier Q, Lortie F, Gerard J. How does paraffin wax prevent evaporation of acrylic‐based syrups dedicated to fiber‐reinforced composite processing? J Appl Polym Sci 2020. [DOI: 10.1002/app.48685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quentin Charlier
- Univ‐Lyon, INSA‐Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223 Villeurbanne France
| | - Frédéric Lortie
- Univ‐Lyon, INSA‐Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223 Villeurbanne France
| | - Jean‐François Gerard
- Univ‐Lyon, INSA‐Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223 Villeurbanne France
| |
Collapse
|
9
|
Toivonen J, Björkqvist M, Minn H, Vallittu PK, Rekola J. Scattering of therapeutic radiation in the presence of craniofacial bone reconstruction materials. J Appl Clin Med Phys 2019; 20:119-126. [PMID: 31782897 PMCID: PMC6909125 DOI: 10.1002/acm2.12776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Radiation scattering from bone reconstruction materials can cause problems from prolonged healing to osteoradionecrosis. Glass fiber reinforced composite (FRC) has been introduced for bone reconstruction in craniofacial surgery but the effects during radiotherapy have not been previously studied. The purpose of this study was to compare the attenuation and back scatter caused by different reconstruction materials during radiotherapy, especially FRC with bioactive glass (BG) and titanium. Methods The effect of five different bone reconstruction materials on the surrounding tissue during radiotherapy was measured. The materials tested were titanium, glass FRC with and without BG, polyether ether ketone (PEEK) and bone. The samples were irradiated with 6 MV and 10 MV photon beams. Measurements of backscattering and dose changes behind the sample were made with radiochromic film and diamond detector dosimetry. Results An 18% dose enhancement was measured with a radiochromic film on the entrance side of irradiation for titanium with 6 MV energy while PEEK and FRC caused an enhancement of 10% and 4%, respectively. FRC‐BG did not cause any measurable enhancement. The change in dose immediately behind the sample was also greatest with titanium (15% reduction) compared with the other materials (0–1% enhancement). The trend is similar with diamond detector measurements, titanium caused a dose enhancement of up to 4% with a 1 mm sample and a reduction of 8.5% with 6 MV energy whereas FRC, FRC‐BG, PEEK or bone only caused a maximum dose reduction of 2.2%. Conclusions Glass fiber reinforced composite causes less interaction with radiation than titanium during radiotherapy and could provide a better healing environment after bone reconstruction.
Collapse
Affiliation(s)
- Joonas Toivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Mikko Björkqvist
- Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland.,City of Turku, Welfare Division, Turku, Finland
| | - Jami Rekola
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Chitlac-coated Thermosets Enhance Osteogenesis and Angiogenesis in a Co-culture of Dental Pulp Stem Cells and Endothelial Cells. NANOMATERIALS 2019; 9:nano9070928. [PMID: 31252684 PMCID: PMC6669739 DOI: 10.3390/nano9070928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Dental pulp stem cells (DPSCs) represent a population of stem cells which could be useful in oral and maxillofacial reconstruction. They are part of the periendothelial niche, where their crosstalk with endothelial cells is crucial in the cellular response to biomaterials used for dental restorations. DPSCs and the endothelial cell line EA.hy926 were co-cultured in the presence of Chitlac-coated thermosets in culture conditions inducing, in turn, osteogenic or angiogenic differentiation. Cell proliferation was evaluated by 3-[4,5-dimethyl-thiazol-2-yl-]-2,5-diphenyl tetrazolium bromide (MTT) assay. DPSC differentiation was assessed by measuring Alkaline Phosphtase (ALP) activity and Alizarin Red S staining, while the formation of new vessels was monitored by optical microscopy. The IL-6 and PGE2 production was evaluated as well. When cultured together, the proliferation is increased, as is the DPSC osteogenic differentiation and EA.hy926 vessel formation. The presence of thermosets appears either not to disturb the system balance or even to improve the osteogenic and angiogenic differentiation. Chitlac-coated thermosets confirm their biocompatibility in the present co-culture model, being capable of improving the differentiation of both cell types. Furthermore, the assessed co-culture appears to be a useful tool to investigate cell response toward newly synthesized or commercially available biomaterials, as well as to evaluate their engraftment potential in restorative dentistry.
Collapse
|
11
|
Liesmäki O, Plyusnin A, Kulkova J, Lassila LVJ, Vallittu PK, Moritz N. Biostable glass fibre-reinforced dimethacrylate-based composites as potential candidates for fracture fixation plates in toy-breed dogs: Mechanical testing and finite element analysis. J Mech Behav Biomed Mater 2019; 96:172-185. [PMID: 31048259 DOI: 10.1016/j.jmbbm.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
In toy-breed dogs (bodyweight <5 kg), the fractures of the radius and ulna are particularly common and can be caused by minimal trauma. While fracture fixation using metallic plates is a feasible treatment modality, the excessive stiffness of these devices produces the underloading of the bone which may result in the adverse bone remodelling and complications in the healing of the fracture. In this study, we investigated bisphenol A glycidylmethacrylate -based glass fibre reinforced composites as potential alternatives to metals in the devices intended for the fracture fixation of the distal radius in toy-breed dogs. Four composites with different glass fibre reinforcements were prepared as rectangular specimens and as fracture fixation plates. These were mechanically tested in three-point and four-point bending. There were two controls: polyether etherketone reinforced with short carbon fibres (specimens and plates) and commercially available stainless-steel plates. Finite element simulations were used for the assessment of the behaviour of the plates. For the control stainless steel plate, the bending strength was 1.358 N*m, superior to that of any of the composite plates. The composite plate with the matrix reinforced with continuous unidirectional glass fibres had the bending strength of 1.081 N*m, which is sufficient in this clinical context. For the plates made of polyether etherketone reinforced with carbon fibres, the strength was 0.280 N*m. Similar conclusions on the biomechanical behaviour of the plates could be made solely based on the results of the finite element simulations, provided the geometries and the material properties are well defined.
Collapse
Affiliation(s)
- Oliver Liesmäki
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Artem Plyusnin
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Julia Kulkova
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland.
| | - Lippo V J Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; City of Turku Welfare Division, Oral Health Care, Turku, Finland
| | - Niko Moritz
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| |
Collapse
|
12
|
Charlier Q, Fontanier JC, Lortie F, Pascault JP, Gerard JF. Rheokinetic study of acrylic reactive mixtures dedicated to fast processing of fiber-reinforced thermoplastic composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.47391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Quentin Charlier
- University of Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223; F-69621 Villeurbanne France
| | - Jean-Charles Fontanier
- University of Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223; F-69621 Villeurbanne France
| | - Frédéric Lortie
- University of Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223; F-69621 Villeurbanne France
| | - Jean-Pierre Pascault
- University of Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223; F-69621 Villeurbanne France
| | - Jean-François Gerard
- University of Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, UMR CNRS 5223; F-69621 Villeurbanne France
| |
Collapse
|
13
|
Dahl KA, Moritz N, Vallittu PK. Flexural and torsional properties of a glass fiber-reinforced composite diaphyseal bone model with multidirectional fiber orientation. J Mech Behav Biomed Mater 2018; 87:143-147. [PMID: 30071484 DOI: 10.1016/j.jmbbm.2018.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022]
Abstract
Although widely used, metallic implants have certain drawbacks in reconstructive bone surgery. Their high stiffness in respect to cortical bone can lead to complications which include periprosthetic fractures and aseptic loosening. In contrast to metallic alloys, fiber-reinforced composites (FRC) composed of a thermoset polymer matrix reinforced with continuous E-glass fibers have elastic properties matching those of bone. We investigated the mechanical properties of straight FRC tubes and FRC bone models representing the diaphysis of rabbit femur prepared from glass fiber/bisphenol A glycidyl methacrylate (BisGMA) - triethylene glycol dimethacrylate (TEGDMA) composite in three-point bending and torsion. Three groups of straight FRC tubes with different fiber orientations were mechanically tested to determine the best design for the FRC bone model. Tube 1 consisted most axially oriented unidirectional fiber roving and fewest bidirectional fiber sleevings. Fiber composition of tube 3 was the opposite. Tube 2 had moderate composition of both fiber types. Tube 2 resisted highest stresses in the mechanical tests and its fiber composition was selected for the FRC bone model. FRC bone model specimens were then prepared and the mechanical properties were compared with those of cadaver rabbit femora. In three-point bending, FRC bone models resisted 39-54% higher maximum load than rabbit femora with similar flexural stiffness. In torsion, FRC bone models resisted 31% higher maximum torque (p < 0.001) and were 38% more rigid (p = 0.001) than rabbit femora. Glass fiber-reinforced composites have good biocompatibility and from a biomechanical perspective, they could be used even in reconstruction of segmental diaphyseal defects. Development of an implant applicable for clinical use requires further studies.
Collapse
Affiliation(s)
- Kalle A Dahl
- Department of Biomaterials Science and Biocity, Turku Biomaterials Research Program, Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen pitkäkatu 4 B(2nd floor), 20520 Turku, Finland.
| | - Niko Moritz
- Department of Biomaterials Science and Biocity, Turku Biomaterials Research Program, Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen pitkäkatu 4 B(2nd floor), 20520 Turku, Finland; Biomedical Engineering Research Group, Turku Biomaterials Research Program, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Biocity, Turku Biomaterials Research Program, Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen pitkäkatu 4 B(2nd floor), 20520 Turku, Finland; City of Turku Welfare Division, Finland
| |
Collapse
|
14
|
Load-bearing capacity and fracture behavior of glass fiber-reinforced composite cranioplasty implants. J Appl Biomater Funct Mater 2017; 15:e356-e361. [PMID: 28862733 DOI: 10.5301/jabfm.5000375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glass fiber-reinforced composites (FRCs) have been adapted for routine clinical use in various dental restorations and are presently also used in cranial implants. The aim of this study was to measure the load-bearing capacity and failure type of glass FRC implants during static loading with and without interconnective bars and with different fixation modes. METHODS Load-bearing capacities of 2 types of FRC implants with 4 different fixation modes were experimentally tested. The sandwich-like FRC implants were made of 2 sheets of woven FRC fabric, which consisted of silanized, woven E-glass fiber fabrics impregnated in BisGMA-TEGDMA monomer resin matrix. The space between the outer and inner surfaces was filled with glass particles. All FRC implants were tested up to a 10-mm deflection with load-bearing capacity determined at 6-mm deflection. The experimental groups were compared using nonparametric Kruskal-Wallis analysis with Steel-Dwass post hoc test. RESULTS FRC implants underwent elastic and plastic deformation until 6-mm deflection. The loading test did not demonstrate any protrusions of glass fibers or cut fiber even at 10-mm deflection. An elastic and plastic deformation of the implant occurred until the FRC sheets were separated from each other. In the cases of the free-standing setup (no fixation) and the fixation with 6 screws, the FRC implants with 2 interconnective bars showed a significantly higher load-bearing capacity compared with the implant without interconnective bars. CONCLUSIONS FRC implants used in this study showed a load-bearing capacity which may provide protection for the brain after cranial bone defect reconstruction.
Collapse
|
15
|
Kulkova J, Moritz N, Huhtinen H, Mattila R, Donati I, Marsich E, Paoletti S, Vallittu PK. Hydroxyapatite and bioactive glass surfaces for fiber reinforced composite implants via surface ablation by Excimer laser. J Mech Behav Biomed Mater 2017; 75:89-96. [DOI: 10.1016/j.jmbbm.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/31/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
16
|
Biodegradable intramedullary nails reinforced with carbon and alginate fibers: In vitro and in vivo biocompatibility. J Appl Biomater Funct Mater 2017. [PMID: 28623633 DOI: 10.5301/jabfm.5000370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Commonly, intramedullary nails are made of nondegradable materials, and hence they need to be removed once the bone fracture is healed. We propose a novel composite material consisting of poly-L-lactide matrix modified with carbon and alginate fibers to be used for biodegradable intramedullary fixation. The aim of this study was to make in vitro and in vivo biocompatibility assessments. METHODS In the in vitro conditions, biocompatibility of biomaterials was compared using normal human osteoblasts. After 3 and 7 days, cytotoxicity, viability and proliferation tests were performed, as well as cell morphology and adhesion observations. In the in vivo experiments, Californian rabbits (approx. 9 months old) were used. The composite nails and controls (Kirschner wires) were used for fixation of distal femoral osteotomy. The evaluation was made on the basis of clinical observations, radiographs taken after 2, 4, 6 and 8 weeks post implantation, and macroscopic and histological observations. RESULTS Cell tests indicated that both modifiers had a positive influence on cell viability. Biodegradable composite nails led to bony union when used for fixation of distal diaphysis osteotomy in rabbits. Histological analysis showed that the initial focal necrosis should be fully compensated for by the osteoblast proliferation and trabeculae formation. CONCLUSIONS Both in vitro and in vivo tests confirmed biocompatibility and potential applicability of novel biodegradable intramedullary nails modified with long carbon and alginate fibers for osteosynthesis of bone epiphysis.
Collapse
|
17
|
Alhashimi RA, Mannocci F, Sauro S. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials. J Mech Behav Biomed Mater 2017; 69:355-361. [PMID: 28161689 DOI: 10.1016/j.jmbbm.2017.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
|
18
|
Evaluation of the Biocompatibility of New Fiber-Reinforced Composite Materials for Craniofacial Bone Reconstruction. J Craniofac Surg 2016; 27:1694-1699. [DOI: 10.1097/scs.0000000000002925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Esteban-Tejeda L, Cabal B, Torrecillas R, Prado C, Fernandez-Garcia E, López-Piriz R, Quintero F, Pou J, Penide J, Moya JS. Antimicrobial activity of submicron glass fibres incorporated as a filler to a dental sealer. ACTA ACUST UNITED AC 2016; 11:045014. [PMID: 27509353 DOI: 10.1088/1748-6041/11/4/045014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two types of antimicrobial glass fibers containing ZnO and CaO, with diameters ranging from tens of nanometers to 1 µm, were successfully fabricated by a laser spinning technique. The antimicrobial performance was corroborated according to ISO 20743:2013, by using gram-negative (Escherichia coli) and gram-positive (Streptococcus oralis, Streptococcus mutans and Staphylococcus aureus) bacteria, and yeast (Candida krusei) (more than 3 logs of reduction). The metabolic activity and endosomal system of eukaryotic cells were not altered by using eluents of CaO glass submicrometric fibers and ZnO fibers at 1 : 10 dilution as cellular media (viability rates over 70%). A dental material was functionalized by embedding ZnO nanofibers above the percolation threshold (20% wt), creating a three-dimensional (3D) fiber network that added an antimicrobial profile. This new ZnO glass fiber composite is proved non-cytotoxic and preserved the antimicrobial effect after immersion in human saliva. This is the first time that a fiber-reinforced liner with strong antimicrobial-activity has been created to prevent secondary caries. The potential of developing new fiber-reinforced composites (FRCs) with antimicrobial properties opens up an extensive field of dental applications where most important diseases have an infectious origin.
Collapse
Affiliation(s)
- L Esteban-Tejeda
- School of Chemistry-CRANN, Trinity College Dublin, Green College, Dublin 2, Ireland. Department of Biomaterials and Bioinspired Materials, Materials Science Institute of Madrid, (ICMM), Spanish National Research Council (CSIC), Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kulkova J, Moritz N, Huhtinen H, Mattila R, Donati I, Marsich E, Paoletti S, Vallittu PK. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser. Med Eng Phys 2016; 38:664-670. [PMID: 27134152 DOI: 10.1016/j.medengphy.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/22/2016] [Accepted: 04/03/2016] [Indexed: 11/26/2022]
Abstract
Biostable fiber-reinforced composites (FRC) prepared from bisphenol-A-glycidyldimethacrylate (BisGMA)-based thermosets reinforced with E-glass fibers are promising alternatives to metallic implants due to the excellent fatigue resistance and the mechanical properties matching those of bone. Bioactive glass (BG) granules can be incorporated within the polymer matrix to improve the osteointegration of the FRC implants. However, the creation of a viable surface layer using BG granules is technically challenging. In this study, we investigated the potential of Excimer laser ablation to achieve the selective removal of the matrix to expose the surface of BG granules. A UV-vis spectroscopic study was carried out to investigate the differences in the penetration of light in the thermoset matrix and BG. Thereafter, optimal Excimer laser ablation parameters were established. The formation of a calcium phosphate (CaP) layer on the surface of the laser-ablated specimens was verified in simulated body fluid (SBF). In addition, the proliferation of MG63 cells on the surfaces of the laser-ablated specimens was investigated. For the laser-ablated specimens, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V). We concluded that Excimer laser ablation has potential for the creation of a bioactive surface on FRC-implants.
Collapse
Affiliation(s)
- Julia Kulkova
- Turku Clinical Biomaterials Centre (TCBC), Department of Biomaterials Science, Institute of Dentistry, University of Turku and Biocity Turku Biomaterials Research Program and City of Turku Welfare Division, Itäinen pitkäkatu 4B (PharmaCity), FI-20520 Turku, Finland
| | - Niko Moritz
- Turku Clinical Biomaterials Centre (TCBC), Department of Biomaterials Science, Institute of Dentistry, University of Turku and Biocity Turku Biomaterials Research Program and City of Turku Welfare Division, Itäinen pitkäkatu 4B (PharmaCity), FI-20520 Turku, Finland.
| | - Hannu Huhtinen
- Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Finland
| | - Riina Mattila
- Turku Clinical Biomaterials Centre (TCBC), Department of Biomaterials Science, Institute of Dentistry, University of Turku and Biocity Turku Biomaterials Research Program and City of Turku Welfare Division, Itäinen pitkäkatu 4B (PharmaCity), FI-20520 Turku, Finland
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Pekka K Vallittu
- Turku Clinical Biomaterials Centre (TCBC), Department of Biomaterials Science, Institute of Dentistry, University of Turku and Biocity Turku Biomaterials Research Program and City of Turku Welfare Division, Itäinen pitkäkatu 4B (PharmaCity), FI-20520 Turku, Finland
| |
Collapse
|
21
|
Chakladar N, Harper L, Parsons A. Optimisation of composite bone plates for ulnar transverse fractures. J Mech Behav Biomed Mater 2016; 57:334-46. [DOI: 10.1016/j.jmbbm.2016.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
22
|
Ben-Or M, Shavit R, Ben-Tov T, Salai M, Steinberg EL. Control of the micromovements of a composite-material nail design: A finite element analysis. J Mech Behav Biomed Mater 2015; 54:223-8. [PMID: 26476965 DOI: 10.1016/j.jmbbm.2015.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intramedullary nail fixation is the most accepted modality for stabilizing long bone midshaft fractures. The commercially used nails are fabricated from Stainless Steel or Titanium. Composite-materials (CM) mainly carbon-fiber reinforced polymers (CFRP) have been gaining more interest and popularity due to their properties, such as modulus of elasticity close to that of bone, increased fatigue strength, and radio-opacity to irradiation that permits a better visualization of the healing process. The use of CFRP instead of metals allows better control of different directional movements along a fracture site. The purpose of this analysis was to design a CM intramedullary nail to enable micromovements as depicted on a finite element analysis method. METHODS We designed a three-dimentional femoral nail model. Three CFRP with different laminates arrangements, were included in the analysis. The finite element analysis involved applying vertical and horizontal loads on each of the designed and tested nails. RESULTS The nails permitted a transverse micromovement of 0.75mm for the 45° lay-up and 1.5mm for the 90° lay-up for the CM, 1.38mm for the Titanium and 0.74mm for the Stainless Steel nails. The recorded axial movements were 0.53mm for the 45° lay-up, 0.87mm for the 90° lay-up, 0.46mm for the unsymmetrical lay-up CM, 0.046 for the Titanium and 0.02 for the Stainless Steel nails. Overall, the simulations showed that nail transverse micromovements can be reduced by using 45° carbon fiber orientations. Similar results were observed with each metal nails. INTERPRETATION We found that nail micromovements can be controlled by changing the directional stiffness using different lay-up orientations. These results can be useful for predicting nail micromovements under specified loading conditions which are crucial for stimulating callus formation in the early stages of healing.
Collapse
Affiliation(s)
- Mor Ben-Or
- Orthopaedic Division, Sourasky, Tel-Aviv Medical Center, Tel-Aviv University, Israel
| | - Ronen Shavit
- Faculty of Mechanical Engineering, Tel-Aviv University, Israel
| | - Tomer Ben-Tov
- Orthopaedic Division, Sourasky, Tel-Aviv Medical Center, Tel-Aviv University, Israel
| | - Moshe Salai
- Orthopaedic Division, Sourasky, Tel-Aviv Medical Center, Tel-Aviv University, Israel
| | - Ely L Steinberg
- Orthopaedic Division, Sourasky, Tel-Aviv Medical Center, Tel-Aviv University, Israel.
| |
Collapse
|
23
|
Vallittu PK, Närhi TO, Hupa L. Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Dent Mater 2015; 31:371-81. [DOI: 10.1016/j.dental.2015.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/30/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
24
|
Zoller A, Gigmes D, Guillaneuf Y. Simulation of radical polymerization of methyl methacrylate at room temperature using a tertiary amine/BPO initiating system. Polym Chem 2015. [DOI: 10.1039/c5py00229j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model was developed for the polymerization of methyl methacrylate at room temperature. The model used both free volume and empirical models for propagation, termination and several side reactions.
Collapse
Affiliation(s)
- Alexander Zoller
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- F-13397 Marseille
- France
| | - Didier Gigmes
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- F-13397 Marseille
- France
| | - Yohann Guillaneuf
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- F-13397 Marseille
- France
| |
Collapse
|
25
|
High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dent Mater 2015; 31:1-7. [DOI: 10.1016/j.dental.2014.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022]
|
26
|
Ricotti L, Ciuti G, Ghionzoli M, Messineo A, Menciassi A. Metal/polymer composite Nuss bar for minimally invasive bar removal after Pectus Excavatum treatment: FEM simulations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1530-1540. [PMID: 25208771 DOI: 10.1002/cnm.2682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
This study aims at assessing the mechanical behavior of a composite metal/polymer bar to be implanted in the retrosternal position, in order to correct chest wall deformities, such as Pectus Excavatum. A 300-mm-long, 12.7-mm-wide, and 3.5-mm-thick Nuss bar was considered, made of different metals and biodegradable polymers, fixed at its extremities, and with a constant force of 250 N applied on its center. Two different geometries for the metal elements to be embedded in the polymeric matrix were tested: in the former, thin metal sheets and in the latter, cylindrical metal reinforcing rods were considered. Finite element method simulation results are reported, in terms of maximum stress and strain of the bar. Furthermore, the maximum stress values obtained by varying metal sheet thickness or rod diameter (and therefore the volumetric percentage of metal within the matrix) for different material combinations are also shown; optimal configuration for the Pectus Excavatum treatment was finally identified for a composite Nuss bar.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, (Pisa), Italy
| | | | | | | | | |
Collapse
|
27
|
Moritz N, Strandberg N, Zhao D, Mattila R, Paracchini L, Vallittu P, Aro H. Mechanical properties and in vivo performance of load-bearing fiber-reinforced composite intramedullary nails with improved torsional strength. J Mech Behav Biomed Mater 2014; 40:127-139. [DOI: 10.1016/j.jmbbm.2014.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/16/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
28
|
Nganga S, Moritz N, Kolakovic R, Jakobsson K, Nyman JO, Borgogna M, Travan A, Crosera M, Donati I, Vallittu PK, Sandler N. Inkjet printing of Chitlac-nanosilver—a method to create functional coatings for non-metallic bone implants. Biofabrication 2014; 6:041001. [DOI: 10.1088/1758-5082/6/4/041001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Ballo AM, Cekic-Nagas I, Ergun G, Lassila L, Palmquist A, Borchardt P, Lausmaa J, Thomsen P, Vallittu PK, Närhi TO. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations. Dent Mater 2014; 30:e384-95. [PMID: 25182369 DOI: 10.1016/j.dental.2014.08.361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/19/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the bone tissue response to fiber-reinforced composite (FRC) in comparison with titanium (Ti) implants after 12 weeks of implantation in cancellous bone using histomorphometric and ultrastructural analysis. MATERIALS AND METHODS Thirty grit-blasted cylindrical FRC implants with BisGMA-TEGDMA polymer matrix were fabricated and divided into three groups: (1) 60s light-cured FRC (FRC-L group), (2) 24h polymerized FRC (FRC group), and (3) bioactive glass FRC (FRC-BAG group). Titanium implants were used as a control group. The surface analyses were performed with scanning electron microscopy and 3D SEM. The bone-implant contact (BIC) and bone area (BA) were determined using histomorphometry and SEM. Transmission electron microscopy (TEM) was performed on Focused Ion Beam prepared samples of the intact bone-implant interface. RESULTS The FRC, FRC-BAG and Ti implants were integrated into host bone. In contrast, FRC-L implants had a consistent fibrous capsule around the circumference of the entire implant separating the implant from direct bone contact. The highest values of BIC were obtained with FRC-BAG (58±11%) and Ti implants (54±13%), followed by FRC implants (48±10%), but no significant differences in BIC or BA were observed (p=0.07, p=0.06, respectively). TEM images showed a direct contact between nanocrystalline hydroxyapatite of bone and both FRC and FRC-BAG surfaces. CONCLUSION Fiber-reinforced composite implants are capable of establishing a close bone contact comparable with the osseointegration of titanium implants having similar surface roughness.
Collapse
Affiliation(s)
- A M Ballo
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada; Dental Implant and Osseointegration Research Chair, College of Dentistry at King Saud University, Riyadh, Saudi Arabia.
| | - I Cekic-Nagas
- Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - G Ergun
- Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - L Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - A Palmquist
- Department of Biomaterials, Institute for Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - P Borchardt
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; SP Technical Research Institute Sweden, Borås, Sweden
| | - J Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; SP Technical Research Institute Sweden, Borås, Sweden
| | - P Thomsen
- Department of Biomaterials, Institute for Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - P K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - T O Närhi
- Department of Prosthetic Dentistry, Institute of Dentistry, University of Turku, Turku, Finland; Clinic of Oral Diseases, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
30
|
Bagheri ZS, El Sawi I, Bougherara H, Zdero R. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography. J Mech Behav Biomed Mater 2014; 35:27-38. [PMID: 24727574 DOI: 10.1016/j.jmbbm.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/02/2014] [Accepted: 03/09/2014] [Indexed: 12/25/2022]
Abstract
The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.
Collapse
Affiliation(s)
- Zahra S Bagheri
- Department of Mechanical and Industrial Engineering (Eric Palin Hall), Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B-2K3
| | - Ihab El Sawi
- Department of Mechanical and Industrial Engineering (Eric Palin Hall), Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B-2K3
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering (Eric Palin Hall), Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B-2K3.
| | - Radovan Zdero
- Department of Mechanical and Industrial Engineering (Eric Palin Hall), Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B-2K3; Martin Orthopaedic Biomechanics Lab, St. Michael׳s Hospital, Toronto, ON, Canada M5B-1W8
| |
Collapse
|
31
|
Ghosh R, Gupta S. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions. J Mech Behav Biomed Mater 2014; 32:257-269. [PMID: 24508712 DOI: 10.1016/j.jmbbm.2014.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
Abstract
Recent developments in acetabular implants suggest flexible, alternative bearing material that may reduce wear and peri-prosthetic bone resorption. The goal of this study was to investigate the deviations in load transfer and the extent of bone remodelling around composite acetabular components having different geometries, material properties and implant-bone interface conditions, using 3-D FE analysis and bone remodelling algorithm. Variation in prosthesis type and implant-bone interface conditions affected peri-prosthetic strain distribution and bone remodelling. Strain shielding was considerably higher for bonded implant-bone interface condition as compared to debonded implant-bone interface condition. The average bone deformation (0.133mm) for horseshoe-shaped CFR-PEEK (resembling MITCH PCR(TM) cup) was very close to that of the intact acetabulum (0.135mm) at comparable locations. A reduction in bone density of 21-50% was predicted within the acetabulum for the implant resembling Cambridge cup, having bonded interface. For debonded interface condition, bone density increase of ~55% was observed in the supero-posterior part of acetabulum, whereas bone density reductions were low (1-20%) in other locations. Bone density reductions were considerably less (2-4%) for horseshoe-shaped CFR-PEEK component. Moreover, an increase in bone density of 1-87% was predicted around the acetabulum. Compared to the horseshoe-shaped design, the hemispherical design exacerbated bone resorption. Results indicated that the thickness of the acetabular component played a crucial role in the implant induced bone adaptation. The horseshoe-shaped CFR-PEEK component of 3mm thickness seemed a better alternative bearing surface than other designs, with regard to strain shielding, bone deformation and bone remodelling.
Collapse
Affiliation(s)
- Rajesh Ghosh
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
32
|
Abdulmajeed AA, Kokkari AK, Käpylä J, Massera J, Hupa L, Vallittu PK, Närhi TO. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:151-162. [PMID: 24022800 DOI: 10.1007/s10856-013-5040-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.
Collapse
|
33
|
Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering. Eur Polym J 2013; 49:3337-3349. [PMID: 24817764 DOI: 10.1016/j.eurpolymj.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5% to 93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.
Collapse
|
34
|
Aitasalo KMJ, Piitulainen JM, Rekola J, Vallittu PK. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 2013; 36:722-8. [PMID: 23616383 DOI: 10.1002/hed.23370] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/05/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A novel, bioactive, fiber-reinforced composite implant is a solution to address the shortcomings in craniofacial bone reconstruction. A longitudinal clinical investigation with a follow-up time of 4 years was conducted. METHODS A cranial bone reconstruction with the implant was performed on 12 patients. In these patients, the reasons for craniotomies resulting in craniofacial bone defects were traumatic and spontaneous intracranial bleeding as well as infections to the primary reconstruction material. The implant material consisted of a supporting fiber-reinforced framework, porous inner layers, and a bioactive glass (BG; S53P4) filling. The framework and the porous layers were made of a bisphenol-a-glycidyl methacrylate and triethyleneglycoldi-methacrylate (pBisGMA-pTEGDMA) resin matrix, which was reinforced with silanized E-glass. RESULTS In clinical examinations and skull X-rays, the implants were in original positions providing the expected functional and aesthetic outcome at all time points. CONCLUSION The implants functioned appropriately, which would provide a potential solution for craniofacial bone reconstruction in the future.
Collapse
Affiliation(s)
- Kalle M J Aitasalo
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | | | | | | |
Collapse
|
35
|
Hautamäki MP, Puska M, Aho AJ, Kopperud HM, Vallittu PK. Surface modification of fiber reinforced polymer composites and their attachment to bone simulating material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1145-1152. [PMID: 23440429 DOI: 10.1007/s10856-013-4890-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to investigate the effect of fiber orientation of a fiber-reinforced composite (FRC) made of poly-methyl-methacrylate (PMMA) and E-glass to the surface fabrication process by solvent dissolution. Intention of the dissolution process was to expose the fibers and create a macroporous surface onto the FRC to enhance bone bonding of the material. The effect of dissolution and fiber direction to the bone bonding capability of the FRC material was also tested. Three groups of FRC specimens (n = 18/group) were made of PMMA and E-glass fiber reinforcement: (a) group with continuous fibers parallel to the surface of the specimen, (b) continuous fibers oriented perpendicularly to the surface, (c) randomly oriented short (discontinuous) fibers. Fourth specimen group (n = 18) made of plain PMMA served as controls. The specimens were subjected to a solvent treatment by tetrahydrofuran (THF) of either 5, 15 or 30 min of time (n = 6/time point), and the advancement of the dissolution (front) was measured. The solvent treatment also exposed the fibers and created a surface roughness on to the specimens. The solvent treated specimens were embedded into plaster of Paris to simulate bone bonding by mechanical locking and a pull-out test was undertaken to determine the strength of the attachment. All the FRC specimens dissolved as function of time, as the control group showed no marked dissolution during the study period. The specimens with fibers along the direction of long axis of specimen began to dissolve significantly faster than specimens in other groups, but the test specimens with randomly oriented short fibers showed the greatest depth of dissolution after 30 min. The pull-out test showed that the PMMA specimens with fibers were retained better by the plaster of Paris than specimens without fibers. However, direction of the fibers considerably influenced the force of attachment. The fiber reinforcement increases significantly the dissolution speed, and the orientation of the glass fibers has great effect on the dissolving depth of the polymer matrix of the composite, and thus on the exposure of fibers. The glass fibers exposed by the solvent treatment enhanced effectively the attachment of the specimen to the bone modeling material.
Collapse
Affiliation(s)
- M P Hautamäki
- Turku Clinical Biomaterial Centre-TCBC, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
36
|
Abdulmajeed AA, Walboomers XF, Massera J, Kokkari AK, Vallittu PK, Närhi TO. Blood and fibroblast responses to thermoset BisGMA-TEGDMA/glass fiber-reinforced composite implants in vitro. Clin Oral Implants Res 2013; 25:843-51. [PMID: 23590531 DOI: 10.1111/clr.12151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This in vitro study was designed to evaluate both blood and human gingival fibroblast responses on fiber-reinforced composite (FRC) aimed to be used as oral implant abutment material. MATERIAL AND METHODS Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%-TEGDMA 50%) and (b) FRC. The average surface roughness (Ra) was measured using spinning-disk confocal microscope. The phase composition was identified using X-ray diffraction analyzer. The degree of monomer conversion (DC%) was determined using FTIR spectrometry. The blood response, including the blood-clotting ability and platelet adhesion morphology, was evaluated. Fibroblast cell responses were studied in cell culture environment using routine test conditions. RESULTS The Ra of the substrates investigated was less than 0.1 μm with no signs of surface crystallization. The DC% was 89.1 ± 0.5%. The FRC substrates had a shorter clotting time and higher platelets activation state than plain polymer substrates. The FRC substrates showed higher (P < 0.01-0.001) amount of adhered cells than plain polymer substrates at all time points investigated. The strength of attachment was evaluated using serial trypsinization, the number of cells detached from FRC substrates was 59 ± 5%, whereas those detached from the plane polymer substrates was 70 ± 5%, indicating a stronger (P < 0.01) cell attachment on the FRC surfaces. Fibroblasts grew more efficiently on FRC than on plain polymer substrates, showing significantly higher (P < 0.01) cell metabolic activities throughout the experiment. CONCLUSIONS The presence of E-glass fibers enhances blood and fibroblast responses on composite surfaces in vitro.
Collapse
Affiliation(s)
- Aous A Abdulmajeed
- Department of Prosthetic Dentistry, Institute of Dentistry, University of Turku, Turku, Finland; Turku Clinical Biomaterials Centre-TCBC, University of Turku, Turku, Finland; Finnish Doctoral Program in Oral Sciences-FINDOS, Institute of Dentistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, Aro H, Crosera M, Paoletti S. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 2013; 9:5088-99. [PMID: 23059413 DOI: 10.1016/j.actbio.2012.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 01/22/2023]
Abstract
Bisphenol A glycidylmethacrylate (BisGMA)/triethyleneglycol dimethacrylate (TEGDMA) thermosets are biomaterials commonly employed for orthopedic and dental applications; for both these fields, bacterial adhesion to the surface of the implant represents a major issue for the outcome of the surgical procedures. In this study, the antimicrobial properties of a nanocomposite coating formed by polysaccharide 1-deoxylactit-1-yl chitosan (Chitlac) and silver nanoparticles (nAg) on methacrylate thermosets were studied. The Chitlac-nAg system showed good anti-bacterial and anti-biofilm activity although its biocidal properties can be moderately, albeit significantly, inhibited by serum proteins. In vitro studies on the silver release kinetic in physiological conditions showed a steady metal release associated with a gradual loss of antimicrobial activity. However, after 3weeks there was still effective protection against bacterial colonization which could be accounted for by the residual silver. This time-span could be considered adequate to confer short-term protection from early peri-implant infections. Preliminary in vivo tests in a mini-pig animal model showed good biological compatibility of Chitlac-nAg-coated materials when implanted in bony tissue. The comparison was made with implants of titanium Ti6Al4V alloy and with a Chitlac-coated thermoset. Bone healing patterns and biocompatibility parameters observed for nAg-treated material were comparable with those observed for control implants.
Collapse
|
38
|
Carbon fiber reinforced PEEK Optima—A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013; 17:221-8. [DOI: 10.1016/j.jmbbm.2012.09.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
|
39
|
Migliaresi C. Composites. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Moritz N, Linderbäck P, Närhi T. Bioactive Ceramic Coatings for Metallic Implants. Tissue Eng Regen Med 2012. [DOI: 10.1201/b13049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Vallittu P. Biostable Composite Biomaterials in Medical Applications. Tissue Eng Regen Med 2012. [DOI: 10.1201/b13049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass. Dent Mater 2012; 28:1134-45. [PMID: 22925703 DOI: 10.1016/j.dental.2012.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. METHODS The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. RESULTS In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. SIGNIFICANCE The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation.
Collapse
Affiliation(s)
- Sara Nganga
- Department of Biomaterials Science, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
43
|
Nganga S, Travan A, Donati I, Crosera M, Paoletti S, Vallittu PK. Degradation of Silver–Polysaccharide Nanocomposite in Solution and as Coating on Fiber-Reinforced Composites by Lysozyme and Hydrogen Peroxide. Biomacromolecules 2012; 13:2605-8. [DOI: 10.1021/bm300809h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Nganga
- Department of Biomaterials Science, University of Turku, Turku, Finland
- Biocity Turku Biomaterials
Research Program, Turku Clinical Biomaterial Centre - TCBC, Turku, Finland
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127,
Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127,
Italy
| | - Matteo Crosera
- Department of Chemical
and Pharmaceutical
Sciences, University of Trieste, Via Giorgieri
1, Trieste I-34127, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127,
Italy
| | - Pekka K. Vallittu
- Department of Biomaterials Science, University of Turku, Turku, Finland
- Biocity Turku Biomaterials
Research Program, Turku Clinical Biomaterial Centre - TCBC, Turku, Finland
| |
Collapse
|
44
|
Heino TJ, Alm JJ, Moritz N, Aro HT. Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells. J Orthop Res 2012; 30:1019-25. [PMID: 22570220 DOI: 10.1002/jor.22049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
Minipigs are a recommended large animal model for preclinical testing of human orthopedic implants. Mesenchymal stem cells (MSCs) are the key repair cells in bone healing and implant osseointegration, but the osteogenic capacity of minipig MSCs is incompletely known. The aim of this study was to isolate and characterize minipig bone marrow (BM) and peripheral blood (PB) MSCs in comparison to human BM-MSCs. BM sample was aspirated from posterior iliac crest of five male Göttingen minipigs (age 15 ± 1 months). PB sample was drawn for isolation of circulating MSCs. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, colony formation, proliferation, surface marker expression, and differentiation were examined. Human BM-MSCs were isolated and cultured from adult fracture patients (n = 13, age 19-60 years) using identical techniques. MSCs were found in all minipig BM samples, but no circulating MSCs could be detected. Minipig BM-MSCs had similar morphology, proliferation, and colony formation capacities as human BM-MSCs. Unexpectedly, minipig BM-MSCs had a significantly lower ability than human BM-MSCs to form differentiated and functional osteoblasts. This observation emphasizes the need for species-specific optimization of MSC culture protocol before direct systematic comparison of MSCs between human and various preclinical large animal models can be made.
Collapse
Affiliation(s)
- Terhi J Heino
- Orthopaedic Research Unit, University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
45
|
Donati I, Benincasa M, Foulc MP, Turco G, Toppazzini M, Solinas D, Spilimbergo S, Kikic I, Paoletti S. Terminal Sterilization of BisGMA-TEGDMA Thermoset Materials and Their Bioactive Surfaces by Supercritical CO2. Biomacromolecules 2012; 13:1152-60. [DOI: 10.1021/bm300053d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivan Donati
- Department of Life
Sciences, University of Trieste, Via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Monica Benincasa
- Department of Life
Sciences, University of Trieste, Via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Marie-Pierre Foulc
- RESCOLL Société de Recherche, allée Geoffroy Saint Hilaire 8,
F-33615 Pessac, France
| | - Gianluca Turco
- Department of Medical
Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy
| | - Mila Toppazzini
- Department of Life
Sciences, University of Trieste, Via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Dario Solinas
- Department
of Industrial
Engineering and Information Technology, University of Trieste, via Valerio 10, I-34127 Trieste,
Italy
| | - Sara Spilimbergo
- Department of Materials
Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38123 Trento,
Italy
| | - Ireneo Kikic
- Department
of Industrial
Engineering and Information Technology, University of Trieste, via Valerio 10, I-34127 Trieste,
Italy
| | - Sergio Paoletti
- Department of Life
Sciences, University of Trieste, Via Licio Giorgieri 1, I-34127, Trieste, Italy
| |
Collapse
|
46
|
Jie L, Shinya A, Lassila LVJ, Vallittu PK. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution. Odontology 2012; 101:29-33. [PMID: 22371018 DOI: 10.1007/s10266-012-0061-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
Abstract
Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.
Collapse
Affiliation(s)
- Lin Jie
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, People's Republic of China
| | | | | | | |
Collapse
|
47
|
The effect of exposed glass fibers and particles of bioactive glass on the surface wettability of composite implants. Int J Biomater 2011; 2011:607971. [PMID: 22253628 PMCID: PMC3255171 DOI: 10.1155/2011/607971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 09/13/2011] [Indexed: 12/03/2022] Open
Abstract
Measurement of the wettability of a material is a predictive index of cytocompatibility. This study was designed to evaluate the effect of exposed E-glass fibers and bioactive glass (BAG) particles on the surface wettability behavior of composite implants. Two different groups were investigated: (a) fiber reinforced composites (FRCs) with different fiber orientations and (b) polymer composites with different wt. % of BAG particles. Photopolymerized and heat postpolymerized composite substrates were made for both groups. The surface wettability, topography, and roughness were analyzed. Equilibrium contact angles were measured using the sessile drop method. Three liquids were used as a probe for surface free energy (SFE) calculations. SFE values were calculated from contact angles obtained on smooth surfaces. The surface with transverse distribution of fibers showed higher (P < 0.001) polar (γP) and total SFE (γTOT) components (16.9 and 51.04 mJ/m2, resp.) than the surface with in-plane distribution of fibers (13.77 and 48.27 mJ/m2, resp.). The increase in BAG particle wt. % increased the polar (γP) value, while the dispersive (γD) value decreased. Postpolymerization by heat treatment improved the SFE components on all the surfaces investigated (P < 0.001). Composites containing E-glass fibers and BAG particles are hydrophilic materials that show good wettability characteristics.
Collapse
|
48
|
Nganga S, Ylä-Soininmäki A, Lassila LVJ, Vallittu PK. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material. J Mech Behav Biomed Mater 2011; 4:1797-804. [PMID: 22098879 DOI: 10.1016/j.jmbbm.2011.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/18/2011] [Accepted: 05/28/2011] [Indexed: 11/18/2022]
Abstract
Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered.
Collapse
Affiliation(s)
- Sara Nganga
- Department of Biomaterials Science, University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
49
|
El Halabi F, Rodriguez JF, Rebolledo L, Hurtós E, Doblaré M. Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. J Mech Behav Biomed Mater 2011; 4:1819-32. [PMID: 22098881 DOI: 10.1016/j.jmbbm.2011.05.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/17/2022]
Abstract
Cranial implants have experienced a significant evolution in the last decade in different aspects such as materials, method of fixation, and the structure. In addition, patient-specific cranial implants have recently been started to be developed. To achieve this objective, efficient mechanical characterization and numerical modeling of the implant are required to guarantee its functionality on each patient as well as to facilitate further developments. In this work, mechanical characterization and numerical models have been performed for patient-specific Polyaryletherketone (PEEK) scaffold cranial implants. Mechanical characterization has been performed at the scaffold and the whole implant levels under displacement control tests. Two different implant designs for the same patient but with different scaffold structure were experimentally characterized, and finite element models of the implants were developed within the framework of linear elasticity. Two types of finite element models were developed: a detailed finite element model with the actual scaffold geometry, and a solid shell-like model with effective material properties. These effective material properties were obtained by means of the Asymptotic Expansion Homogenization (AEH) theory which accounts for the periodicity of the underlying structure of the material. Experimental results showed a linear response of the material and the implant up to failure, therefore supporting the use of linear elastic models for simulation. Numerical models showed excellent agreement with experiments regarding load-displacement response. Models also showed a very consistent behavior with regard to the location and the value of the maximum principal stress in the implant when subjected to the maximum load of the experiments. The two numerical models were compared. The homogenized model gave results that were very close to those obtained with the detailed model, while reducing the number of degrees of freedom by 90%, and therefore the overall computational burden. The results showed that the models are able to reproduce experimental results conducted on actual implants, offering a valid alternative to be used in the design of customized cranial implants with a scaffold structure.
Collapse
Affiliation(s)
- F El Halabi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
50
|
Abdulmajeed AA, Närhi TO, Vallittu PK, Lassila LV. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite. Dent Mater 2011; 27:313-21. [PMID: 21115192 DOI: 10.1016/j.dental.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|