1
|
Modi SR, Dongare A, Jha K. Strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis. J Med Eng Technol 2025:1-14. [PMID: 40319337 DOI: 10.1080/03091902.2025.2498748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
In the proposed work, strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis is carried out. Strain shielding is a significant concern during total hip arthroplasty (THA) since it reduces bone growth and results in aseptic implant loosening due to the mismatch of femur and implant characteristics. The study examined solid and porous implanted femur bone under three loading conditions: standing, walking and stair climbing. The results show that strains on bone due to porous implants as compared to solid implants have been increased by 31, 24.3% and reduced by 12.18% for standing, walking, and stair climbing human activities, respectively. The findings show that porous implants promote bone growth and reduce aseptic implant loosening by lowering the strain and stress shielding effect.
Collapse
Affiliation(s)
- Sita Ram Modi
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Amardeep Dongare
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Kailash Jha
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
2
|
Baba K, Mori Y, Tanaka H, Kanabuchi R, Kuriyama Y, Kurishima H, Ito K, Kamimura M, Chiba D, Aizawa T. Effectiveness of Stress Shielding Prevention Using a Low Young's Modulus Ti-33.6Nb-4Sn Stem: A 7-Year Follow-Up Study. Med Sci (Basel) 2025; 13:51. [PMID: 40407546 PMCID: PMC12101376 DOI: 10.3390/medsci13020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Stress shielding (SS) after total hip arthroplasty (THA) leads to proximal femoral bone loss and increases the risk of complications such as implant loosening and periprosthetic fracture. While various low-stiffness stems have been developed to prevent SS, they often compromise mechanical stability. A novel femoral stem composed of Ti-33.6Nb-4Sn (TNS) alloy offers a gradually decreasing Young's modulus from proximal to distal regions, potentially improving load distribution and reducing SS. This study aimed to evaluate the mid-term clinical and radiographic outcomes of the TNS stem, with a particular focus on its effectiveness in suppressing SS. METHODS A prospective clinical study was conducted involving 35 patients who underwent THA using the TNS stem, with a minimum follow-up of 7 years. Twenty-one patients with Ti6Al4V metaphyseal-filling stems served as controls. Clinical outcomes were assessed using Japanese Orthopaedic Association (JOA) scores, and radiographic SS was graded using Engh's classification and analyzed in Gruen zones. Inter-examiner reliability and statistical comparisons between groups were performed using appropriate tests. RESULTS The TNS group showed significantly higher preoperative JOA scores than the control group, but no significant difference in final scores. Both groups demonstrated significant improvement postoperatively. Third-degree SS occurred in the TNS group, although the overall SS grade distribution was significantly lower than in the control group (p = 0.03). SS frequency was significantly reduced in Gruen Zones 2, 3, and 6 in the TNS group. CONCLUSIONS The TNS stem demonstrated a significant reduction in SS progression compared to conventional titanium stems over a 7-year period, with comparable clinical outcomes. However, the occurrence of third-degree SS indicates that material optimization alone may be insufficient, highlighting the need for further design improvements.
Collapse
Affiliation(s)
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (K.B.); (H.T.); (R.K.); (Y.K.); (H.K.); (K.I.); (M.K.); (D.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jia T, Guines D, Gordin DM, Leotoing L, Gloriant T. Finite element analysis of a low modulus Ti-20Zr-3Mo-3Sn alloy designed to reduce the stress shielding effect of a hip prosthesis. J Mech Behav Biomed Mater 2024; 157:106640. [PMID: 38917558 DOI: 10.1016/j.jmbbm.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
After total hip arthroplasty, the stress shielding effect can occur due to the difference of stiffness between the metallic alloy of the stems and the host bone, which may cause a proximal bone loss. To overcome this problem, a low-modulus metastable β Ti-20Zr-3Mo-3Sn alloy composition has recently been designed to be potentially used for the cementless femoral hip stems. After having verified experimentally that the β alloy has a low modulus of around 50 GPa, a finite element analysis was performed on a Ti-20Zr-3Mo-3Sn alloy hip prosthesis model to evaluate the influence of a reduced modulus on stress shielding and stress fields in both stem and bone compared with the medical grade Ti-6Al-4V alloy whose elastic modulus reached 110 GPa. Our results show that the Ti-20Zr-3Mo-3Sn stem with low elastic modulus can effectively reduce the total stress shielding by 45.5% compared to the common Ti-6Al-4V prosthesis. Moreover, it is highlighted that the material elasticity affects the stress distribution in the implant, especially near the bone-stem interfaces.
Collapse
Affiliation(s)
- Tianyu Jia
- University of Rennes, INSA Rennes, CNRS UMR 6226 ISCR, 35000, Rennes, France
| | - Dominique Guines
- University of Rennes, INSA Rennes, LGCGM, EA 3913, 35000, Rennes, France
| | | | - Lionel Leotoing
- University of Rennes, INSA Rennes, LGCGM, EA 3913, 35000, Rennes, France
| | - Thierry Gloriant
- University of Rennes, INSA Rennes, CNRS UMR 6226 ISCR, 35000, Rennes, France.
| |
Collapse
|
4
|
Nimmal Haribabu G, Basu B. Implementing Machine Learning approaches for accelerated prediction of bone strain in acetabulum of a hip joint. J Mech Behav Biomed Mater 2024; 153:106495. [PMID: 38460455 DOI: 10.1016/j.jmbbm.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
The Finite Element (FE) methods for biomechanical analysis involving implant design and subject parameters for musculoskeletal applications are extensively reported in literature. Such an approach is manually intensive and computationally expensive with longer simulations times. Although Artificial Intelligence (AI) based approaches are implemented to a limited extent in biomechanics, such approaches to predict bone strain in acetabulum of a hip joint, are hardly explored. In this context, the primary objective of this paper is to evaluate machine learning (ML) models in tandem with high-fidelity FEA data for the accelerated prediction of the biomechanical response in the acetabulum of the human hip joint, during the walking gait. The parameters used in the FEA study included the subject weight, number and distribution of fins on the periphery of the acetabular shell, bone condition and phases of the gait cycle. The biomechanical response has also been evaluated using three different acetabular liners, including pre-clinically validated HDPE-20% HA-20% Al2O3, highly-crosslinked ultrahigh molecular weight polyethylene (HC-UHMWPE) and ZrO2-toughened Al2O3 (ZTA). Such parametric variation in FEA analysis, involving 26 variables and a full factorial design resulted in 10,752 datasets for spatially varying bone strains. The bone condition, as opposed to subject weight, was found to play a statistically significant role in determining the strain response in the periprosthetic bone of the acetabulum. While utilising hyperparameter tuning, K-fold cross validation and statistical learning approaches, a number of ML models were trained on the FEA dataset, and the Random Forest model performed the best with a coefficient of determination (R2) value of 0.99/0.97 and Root Mean Square Error (RMSE) of 0.02/0.01 on the training/test dataset. Taken together, this study establishes the potential of ML approach as a fast surrogate of FEA for implant biomechanics analysis, in less than a minute.
Collapse
Affiliation(s)
- Gowtham Nimmal Haribabu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
6
|
Baba K, Mori Y, Chiba D, Kuwahara Y, Kurishima H, Tanaka H, Kogure A, Kamimura M, Yamada N, Ohtsu S, Oyama M, Masahashi N, Hanada S, Itoi E, Aizawa T. TiNbSn stems with gradient changes of Young's modulus and stiffness reduce stress shielding compared to the standard fit-and-fill stems. Eur J Med Res 2023; 28:214. [PMID: 37400903 DOI: 10.1186/s40001-023-01199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The difference between Young's moduli of the femur and the stem causes stress shielding (SS). TiNbSn (TNS) stem has a low Young's modulus and strength with gradient functional properties during the change in elastic modulus with heat treatment. The aim of this study was to investigate the inhibitory effect of TNS stems on SS and their clinical outcomes compared to conventional stems. METHODS This study was a clinical trial. Primary THA was performed using a TNS stem from April 2016 to September 2017 for patients in the TNS group. Unilateral THA was performed using a Ti6Al4V alloy stem from January 2007 to February 2011 for patients in the control group. The TNS and Ti6Al4V stems were matched in shape. Radiographs were obtained at the 1- and 3-year follow-ups. Two surgeons independently checked the SS grade and appearance of cortical hypertrophy (CH). The Japanese Orthopaedic Association (JOA) scores before and 1 year after surgery were assessed as clinical scores. RESULTS None of the patients in the TNS group had grade 3 or 4 SS. In contrast, in the control group, 24% and 40% of patients had grade 3 and 4 SS at the 1- and 3-year follow-ups, respectively. The SS grade was lower in the TNS group than in the control group at the 1- and 3-year follow-ups (p < 0.001). The frequencies of CH in both groups were no significant difference at the 1- and 3-year follow-ups. The JOA scores of the TNS group significantly improved at 1 year after surgery and were comparable to control group. CONCLUSION The TNS stem reduced SS at 1 and 3 years after THA compared to the proximal-engaging cementless stem, although the shapes of the stems matched. The TNS stem could reduce SS, stem loosening, and periprosthetic fractures. TRIAL REGISTRATION Current Controlled Trials. ISRCTN21241251. https://www.isrctn.com/search?q=21241251 . The date of registration was October 26, 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiyuki Kuwahara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Kurishima
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Norikazu Yamada
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Susumu Ohtsu
- Department of Orthopaedic Surgery, Osaki Citizen Hospital, 3-8-1 Furukawahonami, Osaki, Miyagi, 989-6183, Japan
| | - Masamizu Oyama
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2‑43‑3 Yagiyamahoncho, Taihaku‑ku, Sendai, Miyagi, 982-8501, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku Rosai Hospital, 4-3-21 Dainohara, Aoba-ku, Sendai, Miyagi, 981-0911, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
7
|
Saviour CM, Gupta S. Design of a functionally graded porous uncemented acetabular component: Influence of polar gradation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3709. [PMID: 37089063 DOI: 10.1002/cnm.3709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The functionally graded porous metal-backed (FGPMB) acetabular component has the potential to minimize strain-shielding induced bone resorption, caused by stiffness mismatch of implant and host bone. This study is aimed at a novel design of FGPMB acetabular component, which is based on numerical investigations of the mechanical behavior of acetabular components with regard to common failure scenarios, considering various daily activities and implant-bone interface conditions. Both radial and polar functional gradations were implemented, and the effects of the polar gradation exponent on the failure criteria were evaluated. The relationships between porosity and orthotropic mechanical properties of a tetrahedron-based unit cell were obtained using a numerical homogenization method. Strain-shielding in cancellous bone was relatively lesser for the FGPMB than solid metal-backing. Few nodes around the rim were susceptible to implant-bone interfacial debonding, irrespective of the polar gradation exponent. Although the most favorable bone remodeling predictions were obtained for a polar gradation exponent of 0.1, a sudden change in the porosity was observed near the rim of FGPMB. Bone remodeling patterns were similar for polar gradation exponent of 5.0 and solid metal-backing. Moreover, the volumetric wear was maximum and minimum for polar gradation exponents of 0.1 and 5, respectively. Furthermore, the micromotions of different polar gradation exponents were within a range (20-40 μm) that might facilitate bone ingrowth. Considering common failure mechanisms, the FGPMB having polar gradation exponents in the range of 0.1-0.5 appeared to be a viable alternative to the solid acetabular component, within which a gradation exponent of 0.25 seemed the most appropriate design parameter.
Collapse
Affiliation(s)
- Ceby Mullakkara Saviour
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Vio War AS, Kumar N, Chanda S. Does preclinical analysis based on static loading underestimate post-surgery stem micromotion in THA as opposed to dynamic gait loading? Med Biol Eng Comput 2023; 61:1473-1488. [PMID: 36763232 DOI: 10.1007/s11517-023-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
The success of cementless hip stems depends on the primary stability of the implant quantified by the amount of micromotion at the bone-stem interface. Most finite element (FE)-based preclinical studies on post-surgery stem stability rely on static analysis. Hence, the effect of dynamic gait loading on bone-stem relative micromotion remains virtually unexplored. Furthermore, there is a paucity of research on the primary stability of grooved stems as opposed to plain stem design. The primary aim of this FE study was to understand whether transient dynamic gait had any incremental effect on the net micromotion results and to further draw insights into the effects of grooved texture vis-à-vis a plain model on micromotion and proximal load transfer in host bone. Two musculoskeletal loading regimes corresponding to normal walking (NW) and stair climbing (SC) were considered. Although marginally improved load transfer was predicted proximally for the grooved construct under static loading, the micromotion values (max: NW ~ 7 μm; SC ~ 10 μm) were found to be considerably less in comparison to plain stem (max: NW ~ 50 μm; SC ~ 20 μm). For both physiological load cases, a significant surge in micromotion values was predicted in dynamic analyses as opposed to static analyses for the grooved stem (~ 390% greater). For the plain model, the increase in these values from static to dynamic loading is relatively moderate yet clinically significant (~ 230% greater). This suggests that the qualitative similarities notwithstanding, there were significant dissimilarities in the quantitative trends of micromotion for different cases under both analyses.
Collapse
Affiliation(s)
- Adeline S Vio War
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Neeraj Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Souptick Chanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India.
| |
Collapse
|
9
|
Naghavi SA, Tamaddon M, Garcia-Souto P, Moazen M, Taylor S, Hua J, Liu C. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis. Front Bioeng Biotechnol 2023; 11:1092361. [PMID: 36777247 PMCID: PMC9910359 DOI: 10.3389/fbioe.2023.1092361] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of hip prostheses and exacerbates revision surgery rates. In order to minimise post-hip replacement stress variations, this investigation proposes a low-stiffness, porous Ti6Al4V hip prosthesis, developed through selective laser melting (SLM). The stress shielding effect and potential bone resorption properties of the porous hip implant were investigated through both in vitro quasi-physiological experimental assays, together with finite element analysis. A solid hip implant was incorporated in this investigation for contrast, as a control group. The stiffness and fatigue properties of both the solid and the porous hip implants were measured through compression tests. The safety factor of the porous hip stem under both static and dynamic loading patterns was obtained through simulation. The porous hip implant was inserted into Sawbone/PMMA cement and was loaded to 2,300 N (compression). The proposed porous hip implant demonstrated a more natural stress distribution, with reduced stress shielding (by 70%) and loss in bone mass (by 60%), when compared to a fully solid hip implant. Solid and porous hip stems had a stiffness of 2.76 kN/mm and 2.15 kN/mm respectively. Considering all daily activities, the porous hip stem had a factor of safety greater than 2. At the 2,300 N load, maximum von Mises stresses on the hip stem were observed as 112 MPa on the medial neck and 290 MPa on the distal restriction point, whereby such values remained below the endurance limit of 3D printed Ti6Al4V (375 MPa). Overall, through the strut thickness optimisation process for a Ti6Al4V porous hip stem, stress shielding and bone resorption can be reduced, therefore proposing a potential replacement for the generic solid implant.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Maryam Tamaddon
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Pilar Garcia-Souto
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Stephen Taylor
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Jia Hua
- School of Science and Technology, Middlesex University, London, United Kingdom
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom,*Correspondence: Chaozong Liu,
| |
Collapse
|
10
|
Naghavi SA, Lin C, Sun C, Tamaddon M, Basiouny M, Garcia-Souto P, Taylor S, Hua J, Li D, Wang L, Liu C. Stress Shielding and Bone Resorption of Press-Fit Polyether-Ether-Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study. Polymers (Basel) 2022; 14:4600. [PMID: 36365594 PMCID: PMC9657056 DOI: 10.3390/polym14214600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 09/23/2023] Open
Abstract
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether-ether-ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient-specific femoral implants.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| | - Churun Lin
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Changning Sun
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an 710054, China
| | - Maryam Tamaddon
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| | - Mariam Basiouny
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| | - Pilar Garcia-Souto
- Medical Physics & Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Stephen Taylor
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| | - Jia Hua
- School of Science and Technology, Middlesex University, London NW4 4BT, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ling Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chaozong Liu
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London HA7 4LP, UK
| |
Collapse
|
11
|
Abstract
Total hip arthroplasty is one of the most common and successful orthopedic surgeries. Sometimes, periprosthetic osteolysis occurs associated with the stress-shielding effect: it results in the reduction of bone density, where the femur is not correctly loaded, and in the formation of denser bone, where stresses are confined. This paper illustrates the stress shielding effect as a cause of the failing replacement of the hip joint. An extensive literature survey has been accomplished to describe the phenomenon and identify solutions. The latter refer to the design criteria and the choice of innovative materials/treatments for prosthetic device production. Experimental studies and numerical simulations have been reviewed. The paper includes an introduction to explain the scope; a section illustrating the causes of the stress shielding effect; a section focusing on recent attempts to redefine prosthetic device design criteria, current strategies to improve the osteointegration process, and a number of innovative biomaterials; functionally graded materials are presented in a dedicated section: they allow customizing prosthesis features with respect to the host bone. Conclusions recommend an integrated approach for the production of new prosthetic devices: the “engineering community” has to support the “medical community” to assure an effective translation of research results into clinical practice.
Collapse
|
12
|
Solórzano-Requejo W, Ojeda C, Díaz Lantada A. Innovative Design Methodology for Patient-Specific Short Femoral Stems. MATERIALS 2022; 15:ma15020442. [PMID: 35057160 PMCID: PMC8778668 DOI: 10.3390/ma15020442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The biomechanical performance of hip prostheses is often suboptimal, which leads to problems such as strain shielding, bone resorption and implant loosening, affecting the long-term viability of these implants for articular repair. Different studies have highlighted the interest of short stems for preserving bone stock and minimizing shielding, hence providing an alternative to conventional hip prostheses with long stems. Such short stems are especially valuable for younger patients, as they may require additional surgical interventions and replacements in the future, for which the preservation of bone stock is fundamental. Arguably, enhanced results may be achieved by combining the benefits of short stems with the possibilities of personalization, which are now empowered by a wise combination of medical images, computer-aided design and engineering resources and automated manufacturing tools. In this study, an innovative design methodology for custom-made short femoral stems is presented. The design process is enhanced through a novel app employing elliptical adjustment for the quasi-automated CAD modeling of personalized short femoral stems. The proposed methodology is validated by completely developing two personalized short femoral stems, which are evaluated by combining in silico studies (finite element method (FEM) simulations), for quantifying their biomechanical performance, and rapid prototyping, for evaluating implantability.
Collapse
Affiliation(s)
- William Solórzano-Requejo
- Product Development Laboratory, Department of Mechanical Engineering, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Mechanical Technology Laboratory, Department of Mechanical and Electrical Engineering, Universidad de Piura, Piura 20009, Peru; or
- Correspondence: or (W.S.-R.); (A.D.L.)
| | - Carlos Ojeda
- Mechanical Technology Laboratory, Department of Mechanical and Electrical Engineering, Universidad de Piura, Piura 20009, Peru; or
| | - Andrés Díaz Lantada
- Product Development Laboratory, Department of Mechanical Engineering, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Correspondence: or (W.S.-R.); (A.D.L.)
| |
Collapse
|
13
|
He S, Zhao Y, Wang L, Bao Y, Xu R. Finite element analysis of optimal design of distal geometry of cementless femoral prosthesis. Niger J Clin Pract 2022; 25:1476-1483. [DOI: 10.4103/njcp.njcp_1888_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Chiba D, Yamada N, Mori Y, Oyama M, Ohtsu S, Kuwahara Y, Baba K, Tanaka H, Aizawa T, Hanada S, Itoi E. Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young's modulus. BMC Musculoskelet Disord 2021; 22:987. [PMID: 34836525 PMCID: PMC8620944 DOI: 10.1186/s12891-021-04879-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background This study was performed to investigate the mid-term results of Ti-Nb-Sn (TNS) alloy stem with a low Young’s modulus. Methods This study was a multicenter prospective cohort study. A total of 40 primary total hip arthroplasties performed between April 2016 and September 2017 was enrolled in this study. With the unique functional gradient properties by heating treatment, the strength of the proximal portion was enhanced, while the distal portion maintained a low Young’s modulus. The surgeries were performed through the posterolateral approach using the TNS alloy stems. Radiographs were taken from immediately after surgeries until 3 years, and stress shielding and subsidence of the stems were evaluated. The incidences of the stem breakage were also assessed. Clinical assessments were performed using Japanese Orthopaedic Association (JOA) and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) scores. Results Among the 40 enrolled patients, 36 patients were female and 4 were male. At 3 years after surgery, there were no radiologic signs of loosening, subsidence, or breakage of the stem. Stress shielding was observed in 26 hips (65%). Of 26 hips, 16 hips (40%) were grade 1 and 10 hips (25%) were grade 2. There was no advanced stress shielding. The JOA and JHEQ scores significantly improved compared with the preoperative scores. Conclusion The current study using a new TNS alloy femoral stem showed good clinical outcomes at 3-year follow-up. Radiologically, there was no loosening or subsidence of the stem. The mild stress shielding was observed in 65% of patients. Trial registration Current Controlled Trials ISRCTN21241251. The date of registration was October 26, 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Daisuke Chiba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Norikazu Yamada
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2-43-3 Yagiyamahoncho, Taihaku-ku, Sendai, Miyagi, 982-8501, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Masamizu Oyama
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2-43-3 Yagiyamahoncho, Taihaku-ku, Sendai, Miyagi, 982-8501, Japan
| | - Susumu Ohtsu
- Department of Orthopaedic Surgery, Osaki Citizen Hospital, 3-8-1 Furukawahonami, Osaki, Miyagi, 989-6183, Japan
| | - Yoshiyuki Kuwahara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Sendai Red Cross Hospital, 2-43-3 Yagiyamahoncho, Taihaku-ku, Sendai, Miyagi, 982-8501, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Miyagi, 980-8577, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
15
|
EBRAHIMZADEH A, JAMSHIDI N. REDUCING STRESS SHIELDING AND WEIGHT AS WELL AS HELPING TO REVASCULARIZATION OF THE FEMUR BY APPLYING HONEYCOMB HOLES IN HIP PROSTHESIS. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Total hip Arthroplasty is one of the most common surgeries in elderly people around the world. In spite of many successful cases, a few failures are still reported, a significant number of which relates to the effects of stress shielding. Many scientists have been working on solving this problem by enhancing the material and/or the geometry of the hip prostheses’ stems. For example, hollow-stemmed hip prostheses have been designed and tested. In this study, 30 hollow-stemmed samples were designed which were different in terms of geometry and dimension of their holes as well as the materials defined for them. Then, they were tested through finite element modeling along with validating and verifying the results using experimental and convergence tests. The results including displacements, maximum stress values and consequent safety factors were compared based on the reactions of the samples against various static loads including the loads predefined by ISO 7206-4 as well as the loads which had been previously obtained. [Formula: see text]2 designs show the least stiffness compared to other designs. Designs with 132.66[Formula: see text]mm2 hole area are the most promising layouts for reducing weight and providing the most amount of medullary space for revascularization of the femur. In spite of designs which predictably help revascularization more than [Formula: see text]2 designs, these designs which are of the multi-hole patterns seemed to represent the best outcomes in terms of preventing stress shielding and consequently the best pattern for creating holes in the stem according to the precedence of stress shielding over other problems. The results prove the possibility of representing a promising structure which helps to reduce the weight, stress shielding and the lack of revascularization of the femur.
Collapse
Affiliation(s)
- A. EBRAHIMZADEH
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - N. JAMSHIDI
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
16
|
Chatterjee S, Kobylinski S, Basu B. Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone. J Biomech Eng 2019; 140:2681672. [PMID: 30029239 DOI: 10.1115/1.4040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 11/08/2022]
Abstract
The implant stability and biomechanical response of periprosthetic bone in acetabulum around total hip joint replacement (THR) devices depend on a host of parameters, including design of articulating materials, gait cycle and subject parameters. In this study, the impact of shell design (conventional, finned, spiked, and combined design) and liner material on the biomechanical response of periprosthetic bone has been analyzed using finite element (FE) method. Two different liner materials: high density polyethylene-20% hydroxyapatite-20% alumina (HDPE-20%HA-20%Al2O3) and highly cross-linked ultrahigh molecular weight polyethylene (HC-UHMWPE) were used. The subject parameters included bone condition and bodyweight. Physiologically relevant load cases of a gait cycle were considered. The deviation of mechanical condition of the periprosthetic bone due to implantation was least for the finned shell design. No significant deviation was observed at the bone region adjacent to the spikes and the fins. This study recommends the use of the finned design, particularly for weaker bone conditions. For stronger bones, the combined design may also be recommended for higher stability. The use of HC-UHMWPE liner was found to be better for convensional shell design. However, similar biomechanical response was captured in our FE analysis for both the liner materials in case of other shell designs. Overall, the study establishes the biomechanical response of periprosthetic bone in the acetabular with preclinically tested liner materials together with new shell design for different subject conditions.
Collapse
Affiliation(s)
- Subhomoy Chatterjee
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Translational Center on Biomaterials for Orthopaedic and Dental Applications, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Sabine Kobylinski
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Centre for BioSystems and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Technical University of Applied Sciences Regensburg (OTH Regensburg), Regensburg 93047, Germany
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Translational Center on Biomaterials for Orthopaedic and Dental Applications, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Centre for BioSystems and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India e-mails:
| |
Collapse
|
17
|
Tatani I, Panagopoulos A, Diamantakos I, Sakellaropoulos G, Pantelakis S, Megas P. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Trials 2019; 20:359. [PMID: 31208433 PMCID: PMC6580512 DOI: 10.1186/s13063-019-3445-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Total hip replacement has recently followed a progressive evolution towards principles of bone- and soft-tissue-sparing surgery. Regarding femoral implants, different stem designs have been developed as an alternative to conventional stems, and there is a renewed interest towards short versions of uncemented femoral implants. Based on both experimental testing and finite element modeling, the proposed study has been designed to compare the biomechanical properties and clinical performance of the newly introduced short-stem Minima S, for which clinical data are lacking with an older generation stem, the Trilock Bone Preservation Stem with an established performance record in short to midterm follow-up. METHODS/DESIGN In the experimental study, the transmission of forces as measured by cortical surface-strain distribution in the proximal femur will be evaluated using digital image correlation (DIC), first on the non-implanted femur and then on the implanted stems. Finite element parametric models of the bone, the stem and their interface will be also developed. Finite element predictions of surface strains in implanted composite femurs, after being validated against biomechanical testing measurements, will be used to assist the comparison of the stems by deriving important data on the developed stress and strain fields, which cannot be measured through biomechanical testing. Finally, a prospective randomized comparative clinical study between these two stems will be also conducted to determine (1) their clinical performance up to 2 years' follow-up using clinical scores and gait analysis (2) stem fixation and remodeling using a detailed radiographic analysis and (3) incidence and types of complications. DISCUSSION Our study would be the first that compares not only the clinical and radiological outcome but also the biomechanical properties of two differently designed femoral implants that are theoretically classified in the same main category of cervico-metaphyseal-diaphyseal short stems. We can hypothesize that even these subtle variations in geometric design between these two stems may create different loading characteristics and thus dissimilar biomechanical behaviors, which in turn could have an influence to their clinical performance. TRIAL REGISTRATION International Standard Randomized Controlled Trial Number, ID: ISRCTN10096716 . Retrospectively registered on May 8 2018.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Patras, Greece.
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - G Sakellaropoulos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Patras, Greece
| |
Collapse
|
18
|
Jetté B, Brailovski V, Dumas M, Simoneau C, Terriault P. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. J Mech Behav Biomed Mater 2018; 77:58-72. [DOI: 10.1016/j.jmbbm.2017.08.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/13/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
|
19
|
Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J Mech Behav Biomed Mater 2017; 77:539-550. [PMID: 29069636 DOI: 10.1016/j.jmbbm.2017.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Dense and stiff metallic femoral stems implanted into femurs for total hip arthroplasties produce a stress shielding effect since they modify the original load sharing path in the bony structure. Consequently, in the long term, the strain adaptive nature of bones leads to bone resorption, implant loosening, and the need for arthroplasty revision. The design of new cementless femoral stems integrating open porous structures can reduce the global stiffness of the stems, allowing them a better match with that of bones and provide their firm fixation via bone ingrowth, and, thus reduce the risk of implantation failure. METHODS This paper aims to develop and validate a simplified numerical model of stress shielding, which calculates the levels of bone resorption or formation by comparing strain distributions on the surface of the intact and the implanted femurs subjected to a simulated biological loading. Two femoral stems produced by laser powder-bed fusion using Ti-6Al-4V alloy are employed: the first is fully dense, while the second features a diamond cubic lattice structure in its core. The validation consists of a comparison of the numerically calculated force-displacement diagrams, and displacement and strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS AND CONCLUSIONS The numerical models showed reasonable agreement between the force-displacement diagrams. Also, satisfactory results for the correlation analyses of the total displacement and equivalent strain fields were obtained. The stress shielding effect of the implant was assessed by comparing the equivalent strain fields of the implanted and intact femurs. The results obtained predicted less bone resorption in the femur implanted with the porous stem than with its dense counterpart.
Collapse
|
20
|
Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J Biomech 2017; 63:135-143. [DOI: 10.1016/j.jbiomech.2017.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022]
|
21
|
Bai Y, Zhou R, Cao J, Wei D, Du Q, Li B, Wang Y, Jia D, Zhou Y. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:908-917. [DOI: 10.1016/j.msec.2017.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/26/2022]
|
22
|
Cho YJ, Chun YS, Rhyu KH, Baek JH, Liang H. Distal femoral cortical hypertrophy after hip arthroplasty using a cementless doubletapered femoral stem. J Orthop Surg (Hong Kong) 2016; 24:317-322. [PMID: 28031498 DOI: 10.1177/1602400309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To review 437 hips in 404 patients who underwent total hip arthroplasty (THA) or hemiarthroplasty using the Accolade TMZF stem to determine the incidence and risk factors of distal femoral cortical hypertrophy (DFCH). METHODS Records of 437 hips in 169 men and 235 women aged 26 to 100 (mean, 65.7) years who underwent THA (n=293) or hemiarthroplasty (n=144) using the Accolade TMZF femoral stem by 2 senior surgeons and were followed up for a mean of 54.7 months were reviewed. Clinical outcome was assessed using the modified Harris Hip Score and visual analogue score for pain. Proximal femoral geometry and canal flare index were assessed on preoperative radiographs, and DFCH, stem position, subsidence, loosening, and stress shielding were assessed on postoperative radiographs according to the Gruen zone. RESULTS Of 437 hips, 27 (6.2%) developed DFCH and 410 did not. Hips with DFCH had a higher incidence of thigh pain (18.5% vs. 2.2%, p<0.001) and earlier onset of thigh pain (12.3 vs. 20.8 months, p=0.015), compared with those without. Nonetheless, all femoral stems were well-fixed, and no osteolysis or loosening was detected. The 2 groups achieved comparable clinical outcome in terms of Harris Hip Score and pain. The mean canal flare index was higher in hips with than without DFCH (3.706 vs. 3.294, p=0.002). The mean vertical subsidence of the femoral stem was lower in hips with than without DFCH (1.5 vs. 3.4 mmp<0.001). Subsidence negatively correlated with the canal flare index (correlation coefficient= -0.110, p=0.022). The incidence of the DFCH increased with each unit of increment in canal flare index (odds ratio [OR]=1.828, p=0.043) and each year younger in age (OR=0.968, p=0.015). CONCLUSION The incidence of DFCH in hips withthe Accolade TMZF stem was 6.2%. Patients with a higher canal flare index and younger age had a higher incidence of DFCH. Nonetheless, DFCH did not affect clinical outcome or femoral stem stability.
Collapse
Affiliation(s)
- Yoon Je Cho
- Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
23
|
In vitro implant-bone interface pressure measurements for a cementless femoral implant. A preliminary study. J Orthop Sci 2016; 21:487-492. [PMID: 27183889 DOI: 10.1016/j.jos.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/27/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
PURPOSE Implants endurance as well as a good clinical tolerance depends on the recovery of a physiological stress distribution within bone after implantation. The purpose of the present work was to develop an alternative technique using Force Sensing Resistors (FSR) to gather in vitro pressure values at the implant-bone interface for a cementless implant. METHOD Eight cementless femoral stems were instrumented with six calibrated FSR bonded on each facet and then implanted in eight cadaver femurs. Compression tests were performed until failure and FSR pressure values were recorded. RESULTS The average failure load was 4241 N. The maximum contact pressure measured with the FSR averaged 1.965 MPa. CONCLUSION FSR reached many of the requirements for an ideal implant-bone interfacial sensor. This experimentation provided in vitro quantitative data on contact pressure at the implant-bone interface, which could help understanding stress shielding phenomenon and developing relevant numerical model.
Collapse
|
24
|
Trade-off between stress shielding and initial stability on an anatomical cementless stem shortening: in-vitro biomechanical study. Med Eng Phys 2016; 37:820-5. [PMID: 26117334 DOI: 10.1016/j.medengphy.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022]
Abstract
Shortened cementless femoral stems have become popular with the advent of minimally invasive total hip arthroplasty (THA). Successful THA requires initial stem stability and prevention of stress shielding-mediated bone loss, although the effect of stem shortening is controversial. Here we experimentally examined whether stem shortening affects stress shielding and initial stability. Anatomical stems (length, 120 mm) were cut to an 80 mm or 50 mm length. Ten tri-axial strain gauges measured the cortical strain on each stem-implanted femur to evaluate stress shielding. Two transducers measured axial relative displacement and rotation under single-leg stance loading. The 50 mm stem increased the equivalent strains with respect to the original stem in the proximal calcar region (31.0% relative to intact strain), proximal medial region (63.1%), and proximal lateral region (53.9%). In contrast, axial displacement and rotation increased with a decreasing stem length. However, the axial displacement of the 50 mm stem was below a critical value of 150 µm for bone ingrowth. Our findings indicate that, with regard to a reduction in stem length, there is a tradeoff between stress shielding and initial stability. Shortening the stem up to 50 mm can promote proximal load transfer, but bone loss would be inevitable, even with sufficient initial stability for long-term fixation.
Collapse
|