1
|
Nam YH, Lee SK, Park JH. Dielectrophoresis-Enhanced Microfluidic Device with Membrane Filter for Efficient Microparticle Concentration and Optical Detection. MICROMACHINES 2025; 16:158. [PMID: 40047578 PMCID: PMC11857826 DOI: 10.3390/mi16020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
This paper presents a novel microfluidic device that integrates dielectrophoresis (DEP) forces with a membrane filter to concentrate and trap microparticles in a narrow region for enhanced optical analysis. The device combines the broad particle capture capability of a membrane filter with the precision of DEP to focus particles in regions optimized for optical measurements. The device features transparent indium tin oxide (ITO) top electrodes on a glass substrate and gold (Au) bottom electrodes patterned on a small area of the membrane filter, with spacers to control the gaps between the electrodes. This configuration enables precise particle concentration at a specific location and facilitates real-time optical detection. Experiments using 0.8 μm fluorescent polystyrene (PS) beads and Escherichia coli (E. coli) bacteria demonstrated effective particle trapping and concentration, with fluorescence intensity increasing proportionally to particle concentration. The application of DEP forces in a small region of the membrane filter resulted in a significant enhancement of fluorescence intensity, showcasing the effectiveness of the DEP-enhanced design for improving particle concentration and optical measurement sensitivity. The device also showed promising potential for bacterial detection, particularly with E. coli, by achieving a linear increase in fluorescence intensity with increasing bacterial concentration. These results highlight the device's potential for precise and efficient microparticle concentration and detection.
Collapse
Affiliation(s)
- Young-Ho Nam
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Seung-Ki Lee
- Department of Semiconductor Convergence Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Jae-Hyoung Park
- Department of Semiconductor Convergence Engineering, Dankook University, Yongin 16890, Republic of Korea;
| |
Collapse
|
2
|
Cai X, Briggs RG, Homburg HB, Young IM, Davis EJ, Lin YH, Battiste JD, Sughrue ME. Application of microfluidic devices for glioblastoma study: current status and future directions. Biomed Microdevices 2020; 22:60. [PMID: 32870410 DOI: 10.1007/s10544-020-00516-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.
Collapse
Affiliation(s)
- Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hannah B Homburg
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael E Sughrue
- Cingulum Health, Sydney, Australia.
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7, Barker Street, Randwick, New South Wales, 2031, Australia.
| |
Collapse
|
3
|
Fatsis-Kavalopoulos N, O'Callaghan P, Xie B, Hernández Vera R, Idevall-Hagren O, Kreuger J. Formation of precisely composed cancer cell clusters using a cell assembly generator (CAGE) for studying paracrine signaling at single-cell resolution. LAB ON A CHIP 2019; 19:1071-1081. [PMID: 30783638 DOI: 10.1039/c8lc01153b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The function and behaviour of any given cell in a healthy tissue, or in a tumor, is affected by interactions with its neighboring cells. It is therefore important to create methods that allow for reconstruction of tissue niches in vitro for studies of cell-cell signaling and associated cell behaviour. To this end we created the cell assembly generator (CAGE), a microfluidic device which enables the organization of different cell types into precise cell clusters in a flow chamber compatible with high-resolution microscopy. In proof-of-concept paracrine signalling experiments, 4-cell clusters consisting of one pancreatic β-cell and three breast cancer cells were formed. It has previously been established that extracellular ATP induces calcium (Ca2+) release from the endoplasmic reticulum (ER) to the cytosol before it is cleared back into the ER via sarcoplasmic/ER Ca2+ ATPase (SERCA) pumps. Here, ATP release from the β-cell was stimulated by depolarization, and dynamic changes in Ca2+ levels in the adjacent cancer cells measured using imaging of the calcium indicator Fluo-4. We established that changes in the concentration of cytosolic Ca2+ in the cancer cells were proportional to the distance from the ATP-releasing β-cell. Additionally, we established that the relationship between distance and cytosolic calcium changes were dependent on Ca2+-release from the ER using 5-cell clusters composed of one β-cell, two untreated cancer cells and two cancer cells pretreated with Thapsigargin (to deplete the ER of Ca2+). These experiments show that the CAGE can be used to create exact cell clusters, which affords precise control for reductionist studies of cell-cell signalling and permits the formation of heterogenous cell models of specific tissue niches.
Collapse
|
4
|
Walczuch K, Renze P, Ingensiep C, Degen R, Bui TP, Schnakenberg U, Bräunig P, Bui-Göbbels K. A new microfluidic device design for a defined positioning of neurons in vitro. BIOMICROFLUIDICS 2017; 11:044103. [PMID: 28794814 PMCID: PMC5507706 DOI: 10.1063/1.4993556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A new triangle-shaped microfluidic channel system for defined cell trapping is presented. Different variants of the same basic geometry were produced to reveal the best fitting parameter combinations regarding efficiency and sensitivity. Variants with differences in the trap gap width and the inter-trap distance were analyzed in detail by Computational Fluid Dynamics simulations and in experiments with artificial beads of different sizes (30, 60, 80 μm). Simulation analysis of flow dynamics and pressure profiles revealed strongly reduced pressure conditions and balanced flow rates inside the microfluidic channels compared to commonly used systems with meandering channels. Quantitative experiments with beads showed very good trapping results in all channel types with slight variations due to geometrical differences. Highest efficiency in terms of fast trap filling and low particle loss was shown with channel types having a larger trap gap width (20 μm) and/or a larger inter-trap distance (400 μm). Here, experimental success was achieved in almost 85% to 100% of all cases. Particle loss appeared significantly more often with large beads than with small beads. A significantly reduced trapping efficiency of about 50% was determined by using narrow trap gaps and a small inter-trap distance in combination with large 80 μm beads. The combination of the same parameters with small and medium beads led to an only slight decrease in trapping efficiency (80%). All channel types were tested qualitatively with invertebrate neurons from the pond snail Lymnaea stagnalis. The systems were appropriate to trap those sensitive neurons and to keep their viability in the trapping area at the same time.
Collapse
Affiliation(s)
- Katharina Walczuch
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Peter Renze
- Institute of Energy and Drive Technologies, Hochschule Ulm, Eberhard-Finckh-Str. 11, 89075 Ulm, Germany
| | - Claudia Ingensiep
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rudolf Degen
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Thanh Phong Bui
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Peter Bräunig
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Katrin Bui-Göbbels
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
5
|
Caselli F, Bisegna P. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout. Med Eng Phys 2017; 48:81-89. [PMID: 28462824 DOI: 10.1016/j.medengphy.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 04/02/2017] [Indexed: 10/19/2022]
Abstract
The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented.
Collapse
Affiliation(s)
- Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Simulation-assisted design of microfluidic sample traps for optimal trapping and culture of non-adherent single cells, tissues, and spheroids. Sci Rep 2017; 7:245. [PMID: 28325895 PMCID: PMC5428016 DOI: 10.1038/s41598-017-00229-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d < 500 μm, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100× the tissue volume to ensure optimal metabolism for at least 24 hours.
Collapse
|