1
|
Mohammadizand M, Shariat-Panahi M, Karimpour M. Surrogate-based positioning optimization of hip prostheses for minimal stress shielding. Med Eng Phys 2025; 135:104273. [PMID: 39922650 DOI: 10.1016/j.medengphy.2024.104273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/15/2024] [Accepted: 12/01/2024] [Indexed: 02/10/2025]
Abstract
The stress shielding phenomenon causes undesirable changes in stress distribution in the bones in which implants are implanted. This phenomenon leads to a gradual decrease in bone density in the vicinity of the implant and ultimately loosening. To improve the endurance of the prosthesis and postpone the revision surgery the prosthesis should be designed and positioned in such a way that the post-implant stress distribution within the bones is as close to the natural distribution as possible. We formulate the problem of achieving a near-normal stress distribution as a constrained optimization problem in which the difference between pre- and post-implant stress distributions constitutes the loss function and five positional and dimensional parameters, including Femoral Anteversion, Neck Shaft Angle, Femoral Head Offset, Cup Version, and Cup Inclination comprise the set of design variables. Finite Elements (FE) analysis is used to obtain the stress distribution in bones before and after the implantation. To create a FE model, first a three-dimensional model of the patient's hip is created using CT images. The model is then subjected to the loads obtained from the patient's gait analysis, and the Stress Shielding Index (SSI) is calculated at critical points of the bones before and after the implantation. The difference between pre- and post-implant SSI values defines the cost function. To reduce the computational cost of numerous cost function evaluations a surrogate model (a 5 × 1 MLP neural network) is employed to predict the value of the cost function. Design Of Experiments (DOE) is used to sample the hyperspace of the design variables and generate training, test and validation data. The optimization problem is solved using Genetic Algorithms and the results are compared with the results of the best set of initial samples. Results from the proposed approach show a significant reduction in the difference between pre- and post-implant stress distributions and a 12 % reduction in the Stress Shielding Index.
Collapse
Affiliation(s)
- Mahmoud Mohammadizand
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Massoud Shariat-Panahi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Morad Karimpour
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Salaha ZFM, Ammarullah MI, Abdullah NNAA, Aziz AUA, Gan HS, Abdullah AH, Abdul Kadir MR, Ramlee MH. Biomechanical Effects of the Porous Structure of Gyroid and Voronoi Hip Implants: A Finite Element Analysis Using an Experimentally Validated Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093298. [PMID: 37176180 PMCID: PMC10179376 DOI: 10.3390/ma16093298] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Total hip arthroplasty (THA) is most likely one of the most successful surgical procedures in medicine. It is estimated that three in four patients live beyond the first post-operative year, so appropriate surgery is needed to alleviate an otherwise long-standing suboptimal functional level. However, research has shown that during a complete THA procedure, a solid hip implant inserted in the femur can damage the main arterial supply of the cortex and damage the medullary space, leading to cortical bone resorption. Therefore, this study aimed to design a porous hip implant with a focus on providing more space for better osteointegration, improving the medullary revascularisation and blood circulation of patients. Based on a review of the literature, a lightweight implant design was developed by applying topology optimisation and changing the materials of the implant. Gyroid and Voronoi lattice structures and a solid hip implant (as a control) were designed. In total, three designs of hip implants were constructed by using SolidWorks and nTopology software version 2.31. Point loads were applied at the x, y and z-axis to imitate the stance phase condition. The forces represented were x = 320 N, y = -170 N, and z = -2850 N. The materials that were used in this study were titanium alloys. All of the designs were then simulated by using Marc Mentat software version 2020 (MSC Software Corporation, Munich, Germany) via a finite element method. Analysis of the study on topology optimisation demonstrated that the Voronoi lattice structure yielded the lowest von Mises stress and displacement values, at 313.96 MPa and 1.50 mm, respectively, with titanium alloys as the materials. The results also indicate that porous hip implants have the potential to be implemented for hip implant replacement, whereby the mechanical integrity is still preserved. This result will not only help orthopaedic surgeons to justify the design choices, but could also provide new insights for future studies in biomechanics.
Collapse
Affiliation(s)
- Zatul Faqihah Mohd Salaha
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
| | - Nik Nur Ain Azrin Abdullah
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Aishah Umairah Abd Aziz
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Hong-Seng Gan
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215400, China
| | - Abdul Halim Abdullah
- School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Medical Devices and Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Hanif Ramlee
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
3
|
Roytman GR, Ramji AF, Beitler B, Yoo B, Leslie MP, Baumgaertner M, Tommasini S, Wiznia DH. Accuracy of guide wire placement for femoral neck stabilization using 3D printed drill guides. 3D Print Med 2022; 8:19. [PMID: 35781846 PMCID: PMC9254431 DOI: 10.1186/s41205-022-00146-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The goal of stabilization of the femoral neck is to limit morbidity and mortality from fracture. Of three potential methods of fixation, (three percutaneous screws, the Synthes Femoral Neck System, and a dynamic hip screw), each requires guide wire positioning of the implant(s) in the femoral neck and head. Consistent and accurate positioning of these systems is paramount to reduce surgical times, stabilize fractures effectively, and reduce complications. To help expedite surgery and achieve ideal implant positioning in the geriatric population, we have developed and validated a surgical planning methodology using 3D modelling and printing technology. METHODS Using image processing software, 3D surgical models were generated placing guide wires in a virtual model of an osteoporotic proximal femur sawbone. Three unique drill guides were created to achieve the optimal position for implant placement for each of the three different implant systems, and the guides were 3D printed. Subsequently, a trauma fellowship trained orthopedic surgeon used the 3D printed guides to position 2.8 mm diameter drill bit tipped guide wires into five osteoporotic sawbones for each of the three systems (fifteen sawbones total). Computed Tomography (CT) scans were then taken of each of the sawbones with the implants in place. 3D model renderings of the CT scans were created using image processing techniques and the displacement and angular deviations at guide wire entry to the optimal sawbone model were measured. RESULTS Across all three percutaneous screw guide wires, the average displacement was 3.19 ± 0.12 mm and the average angular deviation was 4.10 ± 0.17o. The Femoral Neck System guide wires had an average displacement of 1.59 ± 0.18 mm and average angular deviation of 2.81 ± 0.64o. The Dynamic Hip Screw had an average displacement of 1.03 ± 0.19 mm and average angular deviation of 2.59 ± 0.39o. CONCLUSION The use of custom 3D printed drill guides to assist with the positioning of guide wires proved to be accurate for each of the three types of surgical strategies. Guides which are used to place more than 1 guide wire may have lower positional accuracy, as the guide may shift during multiple wire insertions. We believe that personalized point of care drill guides provide an accurate intraoperative method for positioning implants into the femoral neck.
Collapse
Affiliation(s)
- Gregory R Roytman
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- VA Connecticut Healthcare System, Veterans Health Administration, West Haven, CT, USA.
- Biomedical Engineering, Yale School of Engineering and Applied Science, Yale University, New Haven, CT, USA.
| | - Alim F Ramji
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Brian Beitler
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Brad Yoo
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael P Leslie
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael Baumgaertner
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Steven Tommasini
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
- Biomedical Engineering, Yale School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Daniel H Wiznia
- Orthopaedics and Rehabilitation, Yale School of Medicine, Yale University, New Haven, CT, USA
- Mechanical Engineering & Materials Science, Yale School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Tatani I, Megas P, Panagopoulos A, Diamantakos I, Nanopoulos P, Pantelakis S. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation. Biomed Eng Online 2020; 19:65. [PMID: 32814586 PMCID: PMC7437017 DOI: 10.1186/s12938-020-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The progressive evolution in hip replacement research is directed to follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, a renewed interest has been raised towards short uncemented femoral implants. A heterogeneous group of short stems have been designed with the aim to approximate initial, post-implantation bone strain to the preoperative levels in order to minimize the effects of stress shielding. This study aims to investigate the biomechanical properties of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a shortened conventional stem and the Minima S Femoral Stem, an even shorter and anatomically shaped stem, based on experiments and numerical simulations. Furthermore, finite element models of implant-bone constructs should be evaluated for their validity against mechanical tests wherever it is possible. In this work, the validation was performed via a direct comparison of the FE calculated strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS Design differences between Trilock BPS and Minima S femoral stems conditioned different strain pattern distributions. A distally shifting load distribution pattern as a result of implant insertion and also an obvious decrease of strain in the medial proximal aspect of the femur was noted for both stems. Strain changes induced after the implantation of the Trilock BPS stem at the lateral surface were greater compared to the non-implanted femur response, as opposed to those exhibited by the Minima S stem. Linear correlation analyses revealed a reasonable agreement between the numerical and experimental data in the majority of cases. CONCLUSION The study findings support the use of DIC technique as a preclinical evaluation tool of the biomechanical behavior induced by different implants and also identify its potential for experimental FE model validation. Furthermore, a proximal stress-shielding effect was noted after the implantation of both short-stem designs. Design-specific variations in short stems were sufficient to produce dissimilar biomechanical behaviors, although their clinical implication must be investigated through comparative clinical studies.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece.
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Ph Nanopoulos
- Department of Computer Engineering & Informatics, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Challenges of pre-clinical testing in orthopedic implant development. Med Eng Phys 2019; 72:49-54. [DOI: 10.1016/j.medengphy.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/24/2019] [Indexed: 01/23/2023]
|
6
|
Chethan K, Zuber M, Bhat SN, Shenoy SB. Comparative Study of Femur Bone Having Different Boundary Conditions and Bone Structure Using Finite Element Method. Open Biomed Eng J 2018. [DOI: 10.2174/1874120701812010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:Femur bone is an important part in human which basically gives stability and support to carry out all day to day activities. It carries loads from upper body to lower abdomen.Objective:In this work, the femur having composite structure with cortical, cancellous and bone marrow cavity is bisected from condyle region with respect to 25%, 50% and 75% of its height. There is considerable difference in the region chosen for fixing all degrees of freedom in the analysis of femur.Methods:The CT scans are taken, and 3D model is developed using MIMICS. The developed model is used for static structural analysis by varying the load from 500N to 3000N.Results:The findings for 25% bisected femur model report difference in directional deformation less than 5% for loads 2000N and less. In the study comparing fully solid bone and the composite bone, the total deformation obtained for a complete solid bone was 3.5 mm which was 18.7% less than that determined for the composite bone.Conclusion:The standardization for fixing the bone is developed. And it is required to fix the distal end always with considering full femur bone.
Collapse
|