1
|
Zuhair Sameen A, Jaafar R, Zahedi E, Kok Beng G. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms. J Med Eng Technol 2022; 46:567-589. [PMID: 35801952 DOI: 10.1080/03091902.2022.2077998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Blood pressure (BP) is a vital health parameter that varies throughout the day. As a single reading of high BP may not indicate hypertension, continuous monitoring of BP is usually recommended by medical doctors to confirm the diagnosis of hypertension. In the last few decades, researchers have investigated cuff-less and continuous BP measurements based on pulse transit time (PTT). The main purpose of this research is to develop an autoregressive (ARX) system identification (SI)-based PTT calculation model using two PPG signals acquired from carotid and toe. The signals were recorded from 65 subjects with an age range between 20 and 60 years. The results of the study have been validated in two stages. The first validation comprised the estimated BP from PTT using SI compared to the measured BP using the cuff-based method for all subjects. The results of the estimated BP using the proposed method compared to the measured BP obtained using the standard BP cuff measurement method are highly correlated to both systolic blood pressure (R2 = 0.8132) and diastolic blood pressure (R2 = 0.8357). The second validation consisted of comparing PTT values using system identification to the results of the PTT derived from the ECG-PPG method. The results showed that both methods are highly correlated (R2 = 0.7808), and there is no significant difference between them (p < 0.05) with a slightly better PTT estimation related to DBP in the proposed method. Our results have proven that the PTT obtained from the carotid PPG and toe PPG using the system identification approach yielded SBP and DBP estimations that are consistent with the values of the conventional BP cuff method. The newly proposed method has the advantage of being cuff-less and able to provide continuous BP measurements.
Collapse
Affiliation(s)
- Aws Zuhair Sameen
- Department of Medical Instrumentation Engineering Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Rosmina Jaafar
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering, and Built Environment, University Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Gan Kok Beng
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering, and Built Environment, University Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
2
|
Mesin L, Albani S, Policastro P, Pasquero P, Porta M, Melchiorri C, Leonardi G, Albera C, Scacciatella P, Pellicori P, Stolfo D, Grillo A, Fabris B, Bini R, Giannoni A, Pepe A, Ermini L, Seddone S, Sinagra G, Antonini-Canterin F, Roatta S. Assessment of Phasic Changes of Vascular Size by Automated Edge Tracking-State of the Art and Clinical Perspectives. Front Cardiovasc Med 2022; 8:775635. [PMID: 35127855 PMCID: PMC8814097 DOI: 10.3389/fcvm.2021.775635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Assessment of vascular size and of its phasic changes by ultrasound is important for the management of many clinical conditions. For example, a dilated and stiff inferior vena cava reflects increased intravascular volume and identifies patients with heart failure at greater risk of an early death. However, lack of standardization and sub-optimal intra- and inter- operator reproducibility limit the use of these techniques. To overcome these limitations, we developed two image-processing algorithms that quantify phasic vascular deformation by tracking wall movements, either in long or in short axis. Prospective studies will verify the clinical applicability and utility of these methods in different settings, vessels and medical conditions.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- *Correspondence: Luca Mesin
| | - Stefano Albani
- SC Cardiologia Ospedale Regionale U. Parini, Aosta, Italy
- Department of Medical, Surgical and Health Sciences, Universitá di Trieste, Trieste, Italy
| | - Piero Policastro
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Paolo Pasquero
- Department of Medical Sciences, Universitá di Torino, Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, Universitá di Torino, Turin, Italy
| | | | | | - Carlo Albera
- Department of Medical Sciences, Universitá di Torino, Turin, Italy
| | | | - Pierpaolo Pellicori
- Robertson Centre for Biostatistics, Research Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Davide Stolfo
- Department of Medical, Surgical and Health Sciences, Universitá di Trieste, Trieste, Italy
| | - Andrea Grillo
- Department of Medical, Surgical and Health Sciences, Universitá di Trieste, Trieste, Italy
| | - Bruno Fabris
- Department of Medical, Surgical and Health Sciences, Universitá di Trieste, Trieste, Italy
| | - Roberto Bini
- Chirurgia Generale e Trauma Team GOM Niguarda, Milan, Italy
| | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Antonio Pepe
- Highly Specialized in Rehabilitation Hospital-ORAS S.p.A., Motta di Livenza, Italy
- Ospedale Unico di Santorso, AULSS7 Pedemontana, Italy
| | - Leonardo Ermini
- Integrative Physiology Lab, Department of Neuroscience, Universitá di Torino, Turin, Italy
| | - Stefano Seddone
- Integrative Physiology Lab, Department of Neuroscience, Universitá di Torino, Turin, Italy
| | - Gianfranco Sinagra
- Robertson Centre for Biostatistics, Research Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | | | - Silvestro Roatta
- Integrative Physiology Lab, Department of Neuroscience, Universitá di Torino, Turin, Italy
| |
Collapse
|
3
|
Bahloul MA, Laleg Kirati TM. Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silicostudy. Physiol Meas 2021; 42. [PMID: 33761470 DOI: 10.1088/1361-6579/abf1b1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Objective. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation.Approach. The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations.Main results. The results show that the proposed models present a reasonable fit with thein-silicodata of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes.Significance. Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.
Collapse
Affiliation(s)
- Mohamed A Bahloul
- Electrical, and Mathematical Sciences, and Engineering Division (CEMSE), King Abdullah University of Science, and Technology (KAUST), Thuwal 23955- 6900, Makkah Province, Saudi Arabia
| | - Taous-Meriem Laleg Kirati
- Electrical, and Mathematical Sciences, and Engineering Division (CEMSE), King Abdullah University of Science, and Technology (KAUST), Thuwal 23955- 6900, Makkah Province, Saudi Arabia
| |
Collapse
|
4
|
Houriez--Gombaud-Saintonge S, Mousseaux E, Bargiotas I, De Cesare A, Dietenbeck T, Bouaou K, Redheuil A, Soulat G, Giron A, Gencer U, Craiem D, Messas E, Bollache E, Chenoune Y, Kachenoura N. Comparison of different methods for the estimation of aortic pulse wave velocity from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2019; 21:75. [PMID: 31829235 PMCID: PMC6907267 DOI: 10.1186/s12968-019-0584-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 10/22/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Arterial pulse wave velocity (PWV) is associated with increased mortality in aging and disease. Several studies have shown the accuracy of applanation tonometry carotid-femoral PWV (Cf-PWV) and the relevance of evaluating central aorta stiffness using 2D cardiovascular magnetic resonance (CMR) to estimate PWV, and aortic distensibility-derived PWV through the theoretical Bramwell-Hill model (BH-PWV). Our aim was to compare various methods of aortic PWV (aoPWV) estimation from 4D flow CMR, in terms of associations with age, Cf-PWV, BH-PWV and left ventricular (LV) mass-to-volume ratio while evaluating inter-observer reproducibility and robustness to temporal resolution. METHODS We studied 47 healthy subjects (49.5 ± 18 years) who underwent Cf-PWV and CMR including aortic 4D flow CMR as well as 2D cine SSFP for BH-PWV and LV mass-to-volume ratio estimation. The aorta was semi-automatically segmented from 4D flow data, and mean velocity waveforms were estimated in 25 planes perpendicular to the aortic centerline. 4D flow CMR aoPWV was calculated: using velocity curves at two locations, namely ascending aorta (AAo) and distal descending aorta (DAo) aorta (S1, 2D-like strategy), or using all velocity curves along the entire aortic centreline (3D-like strategies) with iterative transit time (TT) estimates (S2) or a plane fitting of velocity curves systolic upslope (S3). For S1 and S2, TT was calculated using three approaches: cross-correlation (TTc), wavelets (TTw) and Fourier transforms (TTf). Intra-class correlation coefficients (ICC) and Bland-Altman biases (BA) were used to evaluate inter-observer reproducibility and effect of lower temporal resolution. RESULTS 4D flow CMR aoPWV estimates were significantly (p < 0.05) correlated to the CMR-independent Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with the strongest correlations for the 3D-like strategy using wavelets TT (S2-TTw) (R = 0.62, 0.65, 0.77 and 0.52, respectively, all p < 0.001). S2-TTw was also highly reproducible (ICC = 0.99, BA = 0.09 m/s) and robust to lower temporal resolution (ICC = 0.97, BA = 0.15 m/s). CONCLUSIONS Reproducible 4D flow CMR aoPWV estimates can be obtained using full 3D aortic coverage. Such 4D flow CMR stiffness measures were significantly associated with Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with a slight superiority of the 3D strategy using wavelets transit time (S2-TTw).
Collapse
Affiliation(s)
- Sophia Houriez--Gombaud-Saintonge
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- ESME Sudria Research Lab, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | - Ioannis Bargiotas
- CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
| | - Alain De Cesare
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Alban Redheuil
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | - Alain Giron
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
| | - Umit Gencer
- Hopital Européen Georges Pompidou, Paris, France
| | - Damian Craiem
- Universidad Favaloro-CONICET, IMeTTyB, Buenos Aires, Argentina
| | | | - Emilie Bollache
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d’Imagerie Biomédicale (LIB), 75006 Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
5
|
Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am J Physiol Heart Circ Physiol 2019; 317:H1062-H1085. [PMID: 31442381 PMCID: PMC6879924 DOI: 10.1152/ajpheart.00218.2019] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
The arterial pulse wave (PW) is a rich source of information on cardiovascular (CV) health. It is widely measured by both consumer and clinical devices. However, the physical determinants of the PW are not yet fully understood, and the development of PW analysis algorithms is limited by a lack of PW data sets containing reference CV measurements. Our aim was to create a database of PWs simulated by a computer to span a range of CV conditions, representative of a sample of healthy adults. The typical CV properties of 25-75 yr olds were identified through a literature review. These were used as inputs to a computational model to simulate PWs for subjects of each age decade. Pressure, flow velocity, luminal area, and photoplethysmographic PWs were simulated at common measurement sites, and PW indexes were extracted. The database, containing PWs from 4,374 virtual subjects, was verified by comparing the simulated PWs and derived indexes with corresponding in vivo data. Good agreement was observed, with well-reproduced age-related changes in hemodynamic parameters and PW morphology. The utility of the database was demonstrated through case studies providing novel hemodynamic insights, in silico assessment of PW algorithms, and pilot data to inform the design of clinical PW algorithm assessments. In conclusion, the publicly available PW database is a valuable resource for understanding CV determinants of PWs and for the development and preclinical assessment of PW analysis algorithms. It is particularly useful because the exact CV properties that generated each PW are known.NEW & NOTEWORTHY First, a comprehensive literature review of changes in cardiovascular properties with age was performed. Second, an approach for simulating pulse waves (PWs) at different ages was designed and verified against in vivo data. Third, a PW database was created, and its utility was illustrated through three case studies investigating the determinants of PW indexes. Fourth, the database and tools for creating the database, analyzing PWs, and replicating the case studies are freely available.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Jorge Mariscal Harana
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
| | - Samuel Vennin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Ye Li
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Phil Chowienczyk
- Department of Clinical Pharmacology, King's College London, King's Health Partners, London, United Kingdom
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Salman HE, Yazicioglu Y. Computational analysis for non-invasive detection of stenosis in peripheral arteries. Med Eng Phys 2019; 70:39-50. [PMID: 31230999 DOI: 10.1016/j.medengphy.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023]
Abstract
Atherosclerosis usually affects the entire cardiovascular system, including peripheral blood vessels. Peripheral arterial stenosis may indicate possible serious vascular disorders related to more vital organs. If peripheral arterial stenosis can be discerned at an early stage, it can serve as a warning sign to take precautions, such as using more invasive diagnostic techniques or adopting a healthier life style. In this study, peripheral regions, such as the thigh, upper arm, and neck are modelled considering stenosis of their major arteries. Stenosis generates a fluctuating pressure field on the arterial wall, which leads to vibration on the skin's surface. This stenosis-induced pressure field is modelled as a harmonic load and applied to the inner surface of the arterial structure. The vibration response on bare skin is computationally determined using the superposition of modal responses. Realistic geometries and hyperelastic material properties are used in modelling the layers of skin, fat, muscle, and bones. The results indicate that stenosis severities higher than 70% lead to a considerable increase in vibration-response amplitudes, especially at frequencies greater than 250 Hz. The detailed analysis of skin responses provides useful information to detect the stenosis location, where the sum of the vibration amplitudes attains its maximum value around the stenosis.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Qatar University, Biomedical Research Center, New Research Complex-Zone 5, P.O. Box 2713, Doha, Qatar; Department of Mechanical Engineering, Middle East Technical University, Dumlupinar Street No:1, 06800 Ankara, Turkey.
| | - Yigit Yazicioglu
- Department of Mechanical Engineering, Middle East Technical University, Dumlupinar Street No:1, 06800 Ankara, Turkey.
| |
Collapse
|
7
|
Experimental and numerical investigation on soft tissue dynamic response due to turbulence-induced arterial vibration. Med Biol Eng Comput 2019; 57:1737-1752. [PMID: 31177410 DOI: 10.1007/s11517-019-01995-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Peripheral arterial occlusive disease is a serious cardiovascular disorder. The arterial occlusion leads to turbulent flow and arterial sound generation on the inner vessel wall. Stenosis-induced vibro-acoustic waves propagate through the surrounding soft tissues and reach the skin surface. In this study, the feasibility of noninvasive acoustic detection of the peripheral arterial stenosis is investigated using the vibration responses by means of experimental and computational models. Latex rubber tube is used to model the artery, and it is surrounded by a tissue mimicking phantom made of bovine gelatin. Vibration responses on phantom surface are measured using laser Doppler vibrometer, and computational results are obtained performing modal analysis. Experimental findings and computational results showed well agreement in terms of spectral content and vibration amplitudes. The effects of various stenosis severities, flow rates, and phantom thicknesses on the vibration responses are investigated from diagnostic perspective. Stenosis severities greater than 70% resulted in a considerable increase in vibration amplitudes. The structural mode shapes of the tissue phantom are dominant between 0 and 100 Hz, suppressing the signals generated by the stenosis. The optimum range of frequency for acoustic stenosis detection is concluded to be between 200 and 500 Hz, particularly around 300 Hz. Graphical abstract .
Collapse
|