1
|
Guo J, Wang X, Liu Z, Zhou J, Wang L. Acoustic resonance frequency analysis for evaluating prosthetic screw stability in splinted implant-supported fixed dental prostheses: An in vitro study. J Prosthet Dent 2025; 133:542.e1-542.e9. [PMID: 39550228 DOI: 10.1016/j.prosdent.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
STATEMENT OF PROBLEM Prosthetic screw loosening is a common mechanical complication of implant-supported fixed dental prostheses. Although techniques for detecting screw loosening in single implant-supported fixed dental prostheses have been reported, studies on the screw stability for splinted implant-supported fixed dental prostheses are lacking. PURPOSE The purpose of this in vitro study was to determine whether acoustic resonance frequency analysis using a newly developed system could detect prosthetic screw loosening in splinted implant-supported fixed dental prostheses. MATERIAL AND METHODS Maxillary and mandibular edentulous gypsum casts with screw-retained definitive fixed dental prostheses supported by 6 implants were used. A tapping simulation (0.2 N, 50 Hz) was directly applied to the buccal side of the tested screw, and a pickup device was used to collect the acoustic signals. The resonance peak frequencies of these signals were extracted by using time-frequency-domain analysis based on short-time Fourier transform. A 2-way mixed analysis of variance was performed to evaluate how jaw position and insertion torque affect resonance peak frequency. The Pearson correlation analysis was used to assess the relationship between the insertion torque and resonance peak frequency for each screw (α=.05). RESULTS Deviation from the insertion torque resulted in significant changes in the resonance peak frequency within 6 to 9 kHz. Additionally, significant positive correlation between the insertion torques and resonance peak frequencies was observed for all screws (P<.05). This correlation was affected by the position of the screw within the prosthesis. Specifically, screw loosening in the posterior and anterior regions had a greater influence on the resonance peak frequency than that in the central region. CONCLUSIONS The acoustic resonance peak frequency shifted leftward as the screw preload torque decreased, indicating a significant correlation with screw stability. These results suggest that acoustic resonance frequency analysis can be used to detect the stability status of a single prosthetic screw in a splinted implant-supported fixed dental prosthesis conveniently and with high sensitivity.
Collapse
Affiliation(s)
- Jiaer Guo
- Resident, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaolu Wang
- Doctoral student, Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Zhixin Liu
- Resident, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Jianying Zhou
- Professor, State Key Laboratory of Optoelectronic Materials & Technology, School of Physics, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Wang
- Associate Professor, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Athanassoulis Makris G, Pastrav L, Mulier M, Vles GF, Desmet W, Denis K. Contactless femoral implant stability monitoring in cementless total hip arthroplasty, A step towards clinical implementation. Med Eng Phys 2024; 133:104243. [PMID: 39557500 DOI: 10.1016/j.medengphy.2024.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
The clinical implementation of currently used devices for intraoperative fixation monitoring of femoral implants via vibration-based methods in cementless total hip arthroplasty is challenging, due to practical and regulatory issues. Motivated by the effectiveness of electromagnetic excitation in similar dental applications, this study investigates the use of electromagnetic excitation for femoral implant stability monitoring during cementless total hip arthroplasty. The results obtained from electromagnetic excitation were largely consistent with reference results obtained through impact excitation, with a Pearson Correlation Coefficient of 0.79 in the 0.1-8 kHz frequency band. Moreover, the peak frequencies obtained via the two methods yielded a relative difference of 0.20 ± 0.22 %. Next, the excitation device was successfully utilized in conjunction with a laser vibrometer to monitor the stability of the femoral implant during an in vitro insertion, proving the feasibility of contactless implant stability monitoring. These results indicate the promising potential of this contactless method for clinical implementation.
Collapse
Affiliation(s)
| | - Leonard Pastrav
- KU Leuven, Department of Mechanical Engineering, Smart Instrumentation, B-3000 Leuven, Belgium.
| | - Michiel Mulier
- UZ Leuven, Department of Orthopaedic Surgery, B-3000 Leuven, Belgium.
| | | | - Wim Desmet
- KU Leuven, Department of Mechanical Engineering, Mecha(tro)nic System Dynamics Section, B-3000 Leuven, Belgium.
| | - Kathleen Denis
- KU Leuven, Department of Mechanical Engineering, Smart Instrumentation, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Fonseca Ulloa CA, Schreynemackers S, Harz T, Lang FW, Fölsch C, Rickert M, Jahnke A, Ishaque BA. Acoustical determination of primary stability of femoral short stem during uncemented hip implantation. Clin Biomech (Bristol, Avon) 2023; 109:106079. [PMID: 37651899 DOI: 10.1016/j.clinbiomech.2023.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Preparing the medullary space of the femur aims to create an ideal form-fitting of cementless implants to provide sufficient initial stability, which is crucial for osseous integration, ensuring good long-term results. Hammering the implant into the proximal femur creates a press-fit anchoring of the endoprosthesis in the medullary space. Implanting the optimal size of the shaft for best fitting should avoid damage to the bone. Modified acoustic signals in connection with implantation are being detected by surgeons and might be related to the primary stability of the implant. METHODS This study aims to explore the relationship between frequency sound patterns and the change in stem stability. For this purpose, n = 32 Metha® short stems were implanted in a clinical setting by the same surgeon. During implantation, the sounds were recorded. To define a change in the acoustic system response during the operation, the individual blows of the implantation sequence were correlated with one another. FINDINGS An algorithm was able to subdivide through sound analysis two groups of hammer blows (area 1 and area 2) since the characteristics of these groups showed significant differences within the frequency range of 100 Hz to 24 kHz. The edge between both groups, detected by the algorithm, was validated with expert surgeons' classifications of the same data. INTERPRETATION In conclusion, monitoring, the hammer blows sound might allow quantification of the primary stability of the implant. Sound analysis including patient parameters and a classification algorithm could provide a precise characterization of implant stability.
Collapse
Affiliation(s)
- Carlos A Fonseca Ulloa
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany.
| | - Simon Schreynemackers
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany; Faculty of Health Sciences, University of Applied Sciences (THM), Wiesenstraße 14, 35390 Giessen, Germany
| | - Torben Harz
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany
| | - Frieder W Lang
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany
| | - Christian Fölsch
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany; Department of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg (UKGM), Klinikstrasse 33, 35392 Giessen, Germany
| | - Markus Rickert
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany; Department of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg (UKGM), Klinikstrasse 33, 35392 Giessen, Germany
| | - Alexander Jahnke
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany
| | - Bernd A Ishaque
- Laboratory of Biomechanics, Justus-Liebig-University Giessen, Klinikstrasse 29, 35392 Giessen, Germany; Department of Orthopaedics and Orthopaedic Surgery, University Hospital Giessen and Marburg (UKGM), Klinikstrasse 33, 35392 Giessen, Germany
| |
Collapse
|
4
|
Poudrel AS, Rosi G, Nguyen VH, Housset V, Flouzat-Lachaniette CH, Haiat G. Detection of periprosthetic fractures around the femoral stem by resonance frequency analysis: An in vitro study. Proc Inst Mech Eng H 2023:9544119231163632. [PMID: 36992542 DOI: 10.1177/09544119231163632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Periprosthetic femoral bone fractures are frequent complications of Total Hip Arthroplasty (THA) and may occur during the insertion of uncemented Femoral Stems (FS), due to the nature of the press-fit fixation. Such fracture may lead to the surgical failure of the THA and require a revision surgery, which may have dramatic consequences. Therefore, an early detection of intra-operative fractures is important to avoid worsening the fracture and/or to enable a peroperative treatment. The aim of this in vitro study is to determine the sensitivity of a method based on resonance frequency analysis of the bone-stem-ancillary system for periprosthetic fractures detection. A periprosthetic fracture was artificially created close to the lesser-trochanter of 10 femoral bone mimicking phantoms. The bone-stem-ancillary resonance frequencies in the range (2-12) kHz were measured on an ancillary instrumented with piezoelectric sensors, which was fixed to the femoral stem. The measurements were repeated for different fracture lengths from 4 to 55 mm. The results show a decrease of the resonance frequencies due to the fracture occurrence and propagation. The frequency shift reached up to 170 Hz. The minimum fracture length that can be detected varies from 3.1±1.7 mm to 5.9±1.9 mm according to the mode and to the specimen. A significantly higher sensitivity (p = 0.011) was obtained for a resonance frequency around 10.6 kHz, corresponding to a mode vibrating in a plane perpendicular to the fracture. This study opens new paths toward the development of non-invasive vibration-based methods for intra-operative periprosthetic fractures detection.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil, France
| | - Victor Housset
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est Créteil, Créteil, France
- INSERM U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est Créteil, Créteil, France
- INSERM U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-96010 Créteil
| |
Collapse
|
5
|
Influence of Artificial Soft Tissue on Intra-Operative Vibration Analysis Method for Primary Fixation Monitoring in Cementless Total Hip Arthroplasty. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In cementless Total Hip Arthroplasty (THA), achieving high primary implant fixation is crucial for the long-term survivorship of the femoral stem. While orthopedic surgeons traditionally assess fixation based on their subjective judgement, novel vibration-analysis fixation-monitoring techniques show promising potential in providing the surgeon with objective and quantifiable fixation measurements. This study presents a dynamic response measurement protocol for implant endpoint insertion and evaluates this protocol in the presence of artificial soft tissue. After the artificial femur was prepared in accordance with the THA protocol, the implant was inserted and progressively hammered into the cavity. The Pearson Correlation Coefficient (PCC) and Frequency Response Assurance Criterion (FRAC) corresponding to each insertion hammer hit were derived from the Frequency Response Functions (FRF) corresponding to each insertion step. The protocol was repeated with the artificial femur submerged in artificial soft tissue to imitate the influence of anatomical soft tissue. The FRAC appeared overall more sensitive than the PCC. In the presence of the artificial soft tissue the technique yielded higher PCC and FRAC values earlier in the insertion process. The measurements with artificial soft tissue produced FRFs with fewer peaks, lower resonance frequencies, and overall higher damping factors. The soft tissue appears to limit the fixation-change detection capabilities of the system and a promising potential remedy to this limitation is suggested.
Collapse
|
6
|
Multiscale Sensing of Bone-Implant Loosening for Multifunctional Smart Bone Implants: Using Capacitive Technologies for Precision Controllability. SENSORS 2022; 22:s22072531. [PMID: 35408143 PMCID: PMC9003018 DOI: 10.3390/s22072531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
The world population growth and average life expectancy rise have increased the number of people suffering from non-communicable diseases, namely osteoarthritis, a disorder that causes a significant increase in the years lived with disability. Many people who suffer from osteoarthritis undergo replacement surgery. Despite the relatively high success rate, around 10% of patients require revision surgeries, mostly because existing implant technologies lack sensing devices capable of monitoring the bone–implant interface. Among the several monitoring methodologies already proposed as substitutes for traditional imaging methods, cosurface capacitive sensing systems hold the potential to monitor the bone–implant fixation states, a mandatory capability for long-term implant survival. A multifaceted study is offered here, which covers research on the following points: (1) the ability of a cosurface capacitor network to effectively monitor bone loosening in extended peri-implant regions and according to different stimulation frequencies; (2) the ability of these capacitive architectures to provide effective sensing in interfaces with hydroxyapatite-based layers; (3) the ability to control the operation of cosurface capacitive networks using extracorporeal informatic systems. In vitro tests were performed using a web-based network sensor composed of striped and interdigitated capacitive sensors. Hydroxyapatite-based layers have a minor effect on determining the fixation states; the effective operation of a sensor network-based solution communicating through a web server hosted on Raspberry Pi was shown. Previous studies highlight the inability of current bone–implant fixation monitoring methods to significantly reduce the number of revision surgeries, as well as promising results of capacitive sensing systems to monitor micro-scale and macro-scale bone–interface states. In this study, we found that extracorporeal informatic systems enable continuous patient monitoring using cosurface capacitive networks with or without hydroxyapatite-based layers. Findings presented here represent significant advancements toward the design of future multifunctional smart implants.
Collapse
|
7
|
Using Acoustic Vibrations as a Method for Implant Insertion Assessment in Total Hip Arthroplasty. SENSORS 2022; 22:s22041609. [PMID: 35214521 PMCID: PMC8877904 DOI: 10.3390/s22041609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023]
Abstract
The success of total hip arthroplasty depends on the experience of the surgeon, and one of the ways the surgeon currently determines the final implant insertion depth is to listen to the change in audible pitch of the hammering sound. We investigated the use of vibration emissions as a novel method for insertion quality assessment. A non-invasive contact microphone-based measurement system for insertion depth estimation, fixation and fracture detection was developed using a simplified in vitro bone/implant (n = 5). A total of 2583 audio recordings were analyzed in vitro to obtain energy spectral density functions. Out of the four main resonant peaks under in vitro conditions, broach insertion depth statistically correlates to increasing 3rd and 4th peak frequencies. Degree of fixation was also observed as higher goodness of fit (0.26–0.78 vs. 0.12–0.51 between two broach sizes, the latter undersized). Finally, however, the moment of fracture could not be predicted. A cadaveric in situ pilot study suggests comparable resonant frequencies in the same order of magnitudes with the bone model. Further understanding of the signal patterns are needed for an early warning system diagnostic system for imminent fractures, bone damage, improving accuracy and quality of future procedures.
Collapse
|
8
|
Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms. Ann Biomed Eng 2022; 50:16-28. [PMID: 34993695 DOI: 10.1007/s10439-021-02887-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/01/2022]
Abstract
The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability. The aim of this study is to investigate whether EMA performed directly on the ancillary could be used to monitor the femoral stem insertion into the bone. To do so, a cementless femoral stem was inserted into 10 bone phantoms of human femurs and EMA was carried out on the ancillary using a dedicated impact hammer for each insertion step. Two bending modes could be identified in the frequency range [400-8000] Hz for which the resonance frequency was shown to be sensitive to the insertion step and to the bone-implant interface properties. A significant correlation was obtained between the two modal frequencies and the implant insertion depth (R2 = 0.95 ± 0.04 and R2 = 0.94 ± 0.06). This study opens new paths towards the development of noninvasive vibration based evaluation methods to monitor cementless implant insertion.
Collapse
|
9
|
Nakashima D, Mikami K, Kikuchi S, Nishikino M, Kitamura T, Hasegawa N, Matsumoto M, Nakamura M, Nagura T. Laser resonance frequency analysis of pedicle screw stability: A cadaveric model bone study. J Orthop Res 2021; 39:2474-2484. [PMID: 33458845 PMCID: PMC8596623 DOI: 10.1002/jor.24983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
There is no evaluation method currently available to assess intraoperative pedicle screw fixation (PSF) strength. In this study, we established a laser-based resonance frequency analysis (RFA) system with high-speed, noncontact, quantitative measurements of PSF. Clinical investigations in the future can assess surgical failure risk of implants. We investigated the characteristics of the laser RFA and compared them with the conventional methods. We inserted a pedicle screw in the vertebral pedicle of human cadaver or model bone, followed by screw pull-out, peak torque, implant stability quotient (ISQ) value obtained by the magnetic dental RFA system, and fixation force of laser RFA. We compared the outcomes using best-fit linear or logarithmic approximations. For the model bone study, the resonance frequency (RF) versus peak torque/pull-out force (POF) demonstrated strong correlations using logarithmic approximation (vs. peak torque: R = 0.931, p < .001, vs. POF: R = 0.931, p < .001). RF strongly correlated with the ISQ value using linear approximation (R = 0.981, p < .001). For the cadaveric vertebrae study, the correlation coefficients between RF and the peak torque/POF were significant regardless of approximation method (peak torque: logarithmic: R = 0.716 vs. linear: R = 0.811; p < .001) (POF: logarithmic: R = 0.644 vs. linear: R = 0.548; p < .05). Thus, the results of this study revealed a constant correlation between RFA and conventional methods as a measurement validation, predicting favorable support for intraoperative PSF. RFA has the potential to be a new index for evaluating the implant fixation force.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Katsuhiro Mikami
- Faculty of Biology‐Oriented Science and Technology, Kindai UniversityKinokawaWakayamaJapan
| | - Shunsuke Kikuchi
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Masaharu Nishikino
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Toshiyuki Kitamura
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Noboru Hasegawa
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Morio Matsumoto
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Masaya Nakamura
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Takeo Nagura
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan,Department of Clinical BiomechanicsKeio University School of Medicine, ShinjukuTokyoJapan
| |
Collapse
|
10
|
Goossens Q, Pastrav L, Roosen J, Mulier M, Desmet W, Vander Sloten J, Denis K. Acoustic analysis to monitor implant seating and early detect fractures in cementless THA: An in vivo study. J Orthop Res 2021; 39:1164-1173. [PMID: 32844506 DOI: 10.1002/jor.24837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The initial stability of cementless total hip arthroplasty (THA) implants is obtained by an interference fit that allows osseointegration for a long term secondary stability of the implant. Yet, finding the insertion endpoint that corresponds to an appropriate initial stability is currently often based on a number of subjective experiences of the orthopedic surgeon, which can be challenging. In order to assist the orthopedic surgeons in their pursuit to find this optimal initial stability, this study aims to determine whether the analysis of sound that results from the implant insertion hammer blows can be used to objectively monitor the insertion process of cementless THA implants. An in vivo study was conducted. The experimental results revealed vibro-acoustic behavior sensitive to implant seating, related to the low frequency content of the response spectra. This sensitive low-frequency behavior was quantified by a set of specific vibro-acoustic features and metrics that reflected the power and similarity of the low-frequency response. These features and metrics allowed monitoring the implant seating and their convergence agreed well with the endpoint of insertion as determined by the orthopedic surgeon. Intraoperative fractures caused an abrupt and opposite change of the vibro-acoustic behavior prior to the notification of the fracture by the orthopedic surgeon. The observation of such an abrupt change in the vibro-acoustic behavior can be an important early warning for loss of implant stability. The presented vibro-acoustic measurement method shows potential to serve as a decision supporting source of information as it showed to reflect the implant seating.
Collapse
Affiliation(s)
- Quentin Goossens
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Leonard Pastrav
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorg Roosen
- Division of Orthopedics, University Hospital Leuven, Leuven, Belgium
| | - Michiel Mulier
- Division of Orthopedics, University Hospital Leuven, Leuven, Belgium
| | - Wim Desmet
- MSD Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Kathleen Denis
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Kwak Y, Nguyen VH, Hériveaux Y, Belanger P, Park J, Haïat G. Ultrasonic assessment of osseointegration phenomena at the bone-implant interface using convolutional neural network. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:4337. [PMID: 34241416 DOI: 10.1121/10.0005272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Although endosseous implants are widely used in the clinic, failures still occur and their clinical performance depends on the quality of osseointegration phenomena at the bone-implant interface (BII), which are given by bone ingrowth around the BII. The difficulties in ensuring clinical reliability come from the complex nature of this interphase related to the implant surface roughness and the presence of a soft tissue layer (non-mineralized bone tissue) at the BII. The aim of the present study is to develop a method to assess the soft tissue thickness at the BII based on the analysis of its ultrasonic response using a simulation based-convolution neural network (CNN). A large-annotated dataset was constructed using a two-dimensional finite element model in the frequency domain considering a sinusoidal description of the BII. The proposed network was trained by the synthesized ultrasound responses and was validated by a separate dataset from the training process. The linear correlation between actual and estimated soft tissue thickness shows excellent R2 values equal to 99.52% and 99.65% and a narrow limit of agreement corresponding to [ -2.56, 4.32 μm] and [ -15.75, 30.35 μm] of microscopic and macroscopic roughness, respectively, supporting the reliability of the proposed assessment of osseointegration phenomena.
Collapse
Affiliation(s)
- Yunsang Kwak
- Centre National de la Recherche Scientifique, MSME, Université Paris-Est Créteil, Université Gustave Eiffel, F-94010 Creteil, France
| | - Vu-Hieu Nguyen
- University of Paris Est Creteil, Centre National de la Recherche Scientifique, Multiscale Simulation and Modeling Laboratory, F-94010 Creteil, France
| | - Yoann Hériveaux
- Centre National de la Recherche Scientifique, MSME, Université Paris-Est Créteil, Université Gustave Eiffel, F-94010 Creteil, France
| | - Pierre Belanger
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Rue Notre-Dame O, Montreal, Quebec, H3C 1K3, Canada
| | - Junhong Park
- Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763 Seoul, South Korea
| | - Guillaume Haïat
- Centre National de la Recherche Scientifique, MSME, Université Paris-Est Créteil, Université Gustave Eiffel, F-94010 Creteil, France
| |
Collapse
|
12
|
Proof of Concept for the Detection of Local Pressure Marks in Prosthesis Sockets Using Structural Dynamics Measurement. SENSORS 2021; 21:s21113821. [PMID: 34073104 PMCID: PMC8198458 DOI: 10.3390/s21113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
The wear comfort of a prosthesis is of great importance for amputee patients. The wear comfort can be affected by changes in the interface between the residual limb and prosthesis socket, which can be caused by time-dependent volume fluctuations of the tissue, leading to unwanted local pressure marks. The basis to ensure time-independent wear comfort of a prosthesis is to identify these changes. Common techniques for identifying these variations have a negative impact on the sensitive interface between the residual limb and prosthesis. The following paper contains a proof of concept for the detection of local pressure marks without affecting the described interface using structural dynamics measurements, exemplarily shown at a prosthetic socket for transfemoral amputees in a test bench scenario. The dynamical behaviour of the investigated system is analysed in the form of frequency response functions acquired for different pressure locations and preloads using an impact hammer for excitation and a triaxial acceleration sensor. The frequency response functions show major changes for the various boundary conditions with respect to their frequency-dependent compositions. The results demonstrate how the utilised method enables the identification of changes in local pressure marks regarding the variation of position and magnitude.
Collapse
|
13
|
Behzadi K, Rusk J. Characterization of Acetabular Cup Insertion Forces in Cancellous Bone Proxy for Validation of an Invasive Sensing Model and Development of Automatic Prosthesis Installation Device: A Preliminary Study. J Med Device 2020. [DOI: 10.1115/1.4049085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Total hip replacement is a widespread medical procedure, with over 300,000 surgeries performed each year in the United States alone. The vast majority of total hip replacements utilize press fit fixation. Successful seating of the implant requires a delicate balance between inserting the implant deep enough to obtain sufficient primary stability, while avoiding fracture of bone. To improve patient outcomes, surgeons need assistive technologies that can guide them as to how much force to apply and when to stop impacting. The development of such technology, however, requires a greater understanding of the forces experienced in bone and the resulting cup insertion and implant stability. Here, we present a preliminary study of acetabular cup insertion into bone proxy samples. We find that as the magnitude of force on the acetabular cup increases, cup insertion and axial extraction force increase linearly, then nonlinearly, and finally plateau with full insertion. Within the small nonlinear zone, approximately 90% of both cup insertion and extraction force are achieved with only 50% total energy required for full seating, posing the question as to whether full seating is an appropriate goal in press-fit arthroplasty. For repeated impacts of a given energy, cup displacement and force experienced in bone (measured force profile—MFP) increase correspondingly and reach a plateau over a certain number of impacts (number of impacts to seating—NOITS), which represents the rate of insertion. The relationship between MFP and NOITS can be exploited to develop a force feedback mechanism to quantitatively infer optimal primary implant stability.
Collapse
Affiliation(s)
- Kambiz Behzadi
- Behzadi Medical Device LLC, 2467 Via De Los Milagros, Pleasanton, CA 94566
| | | |
Collapse
|
14
|
Goossens Q, Vancleef S, Leuridan S, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model. J Funct Biomater 2020; 11:jfb11040069. [PMID: 32987709 PMCID: PMC7712050 DOI: 10.3390/jfb11040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young's modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
- Correspondence:
| | - Sanne Vancleef
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Steven Leuridan
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Michiel Mulier
- Division of Orthopaedics, University Hospital Leuven, 3000 Leuven, Belgium;
| | - Wim Desmet
- Department of Mechanical Engineering, MSD Section, KU Leuven, 3000 Leuven, Belgium;
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Kathleen Denis
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| |
Collapse
|
15
|
Remya AR, Vishwash B, Lee C, Pai PS, Espinoza Oras AA, Ozevin D, Mathew MT. Hip implant performance prediction by acoustic emission techniques: a review. Med Biol Eng Comput 2020; 58:1637-1650. [PMID: 32533510 DOI: 10.1007/s11517-020-02202-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
Abstract
Nowadays, acoustic emission (AE) has its applications in various areas, including mechanical, civil, underwater acoustics, and biomedical engineering. It is a non-destructive evaluation (NDE) and a non-intrusive method to detect active damage mechanisms such as crack growth, delamination, and processes such as friction, continuous wear, etc. The application of AE in orthopedics, especially in hip implant monitoring, is an emerging research field. This article presents a thorough literature review associated with the implementation of acoustic emission as a diagnostic tool for total hip replacement (THR) implants. Structural health monitoring of an implant via acoustic emission and vibration analysis is an evolving research area in the field of biomedical engineering. A review of the literature reveals a lack of reliable, non-invasive, and non-traumatic early warning methods to evaluate implant loosening that can help to identify patients at risk for osteolysis prior to implant failure. Developing an intelligent acoustic emission technique with excellent condition monitoring capabilities will be an achievement of great importance that fills the gaps or drawbacks associated with osteolysis/implant failure. Graphical abstract.
Collapse
Affiliation(s)
- Ampadi R Remya
- Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
| | - B Vishwash
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
- Department of Mechanical Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Christine Lee
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - P Srinivasa Pai
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
- Department of Mechanical Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Alejandro A Espinoza Oras
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Didem Ozevin
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Science, UIC School of Medicine, Rockford, IL, USA.
- Department of Material Science and Civil Engineering, University of Illinois, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois, Chicago, IL, USA.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
16
|
Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. SENSORS 2020; 20:s20010254. [PMID: 31906330 PMCID: PMC6983091 DOI: 10.3390/s20010254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022]
Abstract
The total number of total hip arthroplasties is increasing every year, and approximately 10% of these surgeries are revisions. New implant design and surgical techniques are evolving quickly and demand accurate preclinical evaluation. The initial stability of cementless implants is one of the main concerns of these preclinical evaluations. A broad range of initial stability test methods is currently used, which can be categorized into two main groups: Load-to-failure tests and relative micromotion measurements. Measuring relative micromotion between implant and bone is recognized as the golden standard for implant stability testing as this micromotion is directly linked to the long-term fixation of cementless implants. However, specific custom-made set-ups are required to measure this micromotion, with the result that numerous studies opt to perform more straightforward load-to-failure tests. A custom-made micromotion test set-up for artificial acetabular bone models was developed and used to compare load-to-failure (implant push-out test) with micromotion and to assess the influence of bone material properties and press-fit on the implant stability. The results showed a high degree of correlation between micromotion and load-to-failure stability metrics, which indicates that load-to-failure stability tests can be an appropriate estimator of the primary stability of acetabular implants. Nevertheless, micromotions still apply as the golden standard and are preferred when high accuracy is necessary. Higher bone density resulted in an increase in implant stability. An increase of press-fit from 0.7 mm to 1.2 mm did not significantly increase implant stability.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
| | - Michiel Mulier
- Department of Orthopedics, University Hospital Leuven, 3000 Leuven, Belgium
| | - Wim Desmet
- Department of Mechanical Engineering, PMA Division, KU Leuven, 3000 Leuven, Belgium
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| | - Kathleen Denis
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Cachão JH, Soares dos Santos MP, Bernardo R, Ramos A, Bader R, Ferreira JAF, Torres Marques A, Simões JAO. Altering the Course of Technologies to Monitor Loosening States of Endoprosthetic Implants. SENSORS 2019; 20:s20010104. [PMID: 31878028 PMCID: PMC6982938 DOI: 10.3390/s20010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/02/2023]
Abstract
Musculoskeletal disorders are becoming an ever-growing societal burden and, as a result, millions of bone replacements surgeries are performed per year worldwide. Despite total joint replacements being recognized among the most successful surgeries of the last century, implant failure rates exceeding 10% are still reported. These numbers highlight the necessity of technologies to provide an accurate monitoring of the bone–implant interface state. This study provides a detailed review of the most relevant methodologies and technologies already proposed to monitor the loosening states of endoprosthetic implants, as well as their performance and experimental validation. A total of forty-two papers describing both intracorporeal and extracorporeal technologies for cemented or cementless fixation were thoroughly analyzed. Thirty-eight technologies were identified, which are categorized into five methodologies: vibrometric, acoustic, bioelectric impedance, magnetic induction, and strain. Research efforts were mainly focused on vibrometric and acoustic technologies. Differently, approaches based on bioelectric impedance, magnetic induction and strain have been less explored. Although most technologies are noninvasive and are able to monitor different loosening stages of endoprosthetic implants, they are not able to provide effective monitoring during daily living of patients.
Collapse
Affiliation(s)
- João Henrique Cachão
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco P. Soares dos Santos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Correspondence:
| | - Rodrigo Bernardo
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Ramos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rainer Bader
- Department of Orthopedics, University Medicine Rostock, 18057 Rostock, Germany
| | - Jorge A. F. Ferreira
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Torres Marques
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Mechanical Engineering Department, University of Porto, 4200-465 Porto, Portugal
| | - José A. O. Simões
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Laser Resonance Frequency Analysis: A Novel Measurement Approach to Evaluate Acetabular Cup Stability During Surgery. SENSORS 2019; 19:s19224876. [PMID: 31717400 PMCID: PMC6891423 DOI: 10.3390/s19224876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Artificial joint acetabular cup stability is essential for successful total hip arthroplasty. However, a quantitative evaluation approach for clinical use is lacking. We developed a resonance frequency analysis (RFA) system involving a laser system that is fully contactless. This study aimed to investigate the usefulness of laser RFA for evaluating acetabular cup stability. First, the finite element method was performed to determine the vibration mode for analysis. Second, the acetabular cup was press-fitted into a reamed polyurethane cavity that replicated the human acetabular roof. The implanted acetabular cup was vibrated with pulse laser irradiation and the induced vibration was detected with a laser Doppler vibrometer. The time domain signal from the vibrometer was analyzed by fast Fourier transform to obtain the vibration frequency spectrum. After laser RFA, the pull-down force of the acetabular cup was measured as conventional implant fixation strength. The frequency of the first highest amplitude between 2 kHz and 6 kHz was considered as the resonance peak frequency, and its relationship with the pull-down force was assessed. The peak frequency could predict the pull-down force (R2 = 0.859, p < 0.000). Our findings suggest that laser RFA might be useful to measure acetabular cup stability during surgery.
Collapse
|
19
|
Raffa ML, Nguyen VH, Tabor E, Immel K, Housset V, Flouzat-Lachaniette CH, Haiat G. Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment. Proc Inst Mech Eng H 2019; 233:1237-1249. [DOI: 10.1177/0954411919879250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomechanical phenomena occurring at the bone–implant interface during the press-fit insertion of acetabular cup implants are still poorly understood. This article presents a nonlinear geometrical two-dimensional axisymmetric finite element model aiming at describing the biomechanical behavior of the acetabular cup implant as a function of the bone Young’s modulus Eb, the diametric interference fit ( IF), and the friction coefficient µ. The numerical model was compared with experimental results obtained from an in vitro test, which allows to determine a reference configuration with the parameter set: μ* = 0.3, [Formula: see text], and IF* = 1 mm for which the maximal contact pressure tN = 10.7 MPa was found to be localized at the peri-equatorial rim of the acetabular cavity. Parametric studies were carried out, showing that an optimal value of the pull-out force can be defined as a function of μ, Eb, and IF. For the reference configuration, the optimal pull-out force is obtained for μ = 0.6 (respectively, Eb = 0.35 GPa and IF = 1.4 mm). For relatively low value of µ ( µ < 0.2), the optimal value of IF linearly increases as a function of µ independently of Eb, while for µ > 0.2, the optimal value of IF has a nonlinear dependence on µ and decreases as a function of Eb. The results can be used to help surgeons determine the optimal value of IF in a patient specific manner.
Collapse
Affiliation(s)
- Maria Letizia Raffa
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Vu-Hieu Nguyen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Elisabeth Tabor
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Katharina Immel
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Victor Housset
- Service de Chirurgie Orthopédique et Traumatologique du Centre Hospitalier Universitaire Henri Mondor, Créteil, France
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique du Centre Hospitalier Universitaire Henri Mondor, Créteil, France
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| |
Collapse
|
20
|
Wiznia DH, Schwarzkopf R, Iorio R, Long WJ. Factors That Influence Bone-Ingrowth Fixation of Press-Fit Acetabular Cups. JBJS Rev 2019; 7:e2. [DOI: 10.2106/jbjs.rvw.18.00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
21
|
Zhang X, Shi G, Sun X, Zheng W, Lin X, Chen G. Factors Influencing the Outcomes of Artificial Hip Replacements. Cells Tissues Organs 2019; 206:254-262. [DOI: 10.1159/000500518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
Hip replacement is one of the most successful surgeries in the clinic for the removal of painful joints. Hip osteoarthritis and femoral head necrosis are the 2 main reasons for hip replacement. Several factors are associated with the outcomes of surgery. Nonsurgical factors include gender, age, body mass index, prosthetic material, and risk factors. Surgical factors are anesthesia, postoperative complications, and rehabilitation. Considering the increasing demand for hip arthroplasty and the rise in the number of revision operations, it is imperative to understand factor-related progress and how modifications of these factors promotes recovery following hip replacement. In this review, we first summarize recent findings regarding crucial factors that influence the outcomes of artificial hip replacement surgery. These findings not only show the time-specific effect for the treatment and recovery from hip arthroplasty in the clinic, but also provide suitable choices for different individuals for clinicians to consider. This, in turn, will help to develop the best possible postoperative program for specific patients.
Collapse
|
22
|
Modal frequency and shape curvature as a measure of implant fixation: A computer study on the acetabular cup. Med Eng Phys 2018; 60:30-38. [DOI: 10.1016/j.medengphy.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/24/2018] [Accepted: 07/15/2018] [Indexed: 11/18/2022]
|
23
|
Tijou A, Rosi G, Hernigou P, Flouzat-Lachaniette CH, Haïat G. Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors. SENSORS 2017; 18:s18010062. [PMID: 29280982 PMCID: PMC5796378 DOI: 10.3390/s18010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022]
Abstract
The acetabular cup (AC) implant stability is determinant for the success of cementless hip arthroplasty. A method based on the analysis of the impact force applied during the press-fit insertion of the AC implant using a hammer instrumented with a force sensor was developed to assess the AC implant stability. The aim of the present study was to investigate the performance of a method using a hammer equipped with strain sensors to retrieve the AC implant stability. Different AC implants were inserted in five bovine samples with different stability conditions leading to 57 configurations. The AC implant was impacted 16 times by the two hammers consecutively. For each impact; an indicator IS (respectively IF) determined by analyzing the time variation of the signal corresponding to the averaged strain (respectively force) obtained with the stress (respectively strain) hammer was calculated. The pull-out force F was measured for each configuration. F was significantly correlated with IS (R² = 0.79) and IF (R² = 0.80). The present method has the advantage of not modifying the shape of the hammer that can be sterilized easily. This study opens new paths towards the development of a decision support system to assess the AC implant stability.
Collapse
Affiliation(s)
- Antoine Tijou
- Laboratoire de Modélisation et de Simulation Multi-Echelle, CNRS, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
| | - Giuseppe Rosi
- Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, Université Paris-Est, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (P.H.); (C.-H.F.-L.)
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (P.H.); (C.-H.F.-L.)
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Guillaume Haïat
- Laboratoire de Modélisation et de Simulation Multi-Echelle, CNRS, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
- Correspondence: ; Tel.: +33-1-45-17-14-31
| |
Collapse
|