1
|
Nakashima D, Mikami K, Kikuchi S, Nishikino M, Kitamura T, Hasegawa N, Matsumoto M, Nakamura M, Nagura T. Laser resonance frequency analysis of pedicle screw stability: A cadaveric model bone study. J Orthop Res 2021; 39:2474-2484. [PMID: 33458845 PMCID: PMC8596623 DOI: 10.1002/jor.24983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
There is no evaluation method currently available to assess intraoperative pedicle screw fixation (PSF) strength. In this study, we established a laser-based resonance frequency analysis (RFA) system with high-speed, noncontact, quantitative measurements of PSF. Clinical investigations in the future can assess surgical failure risk of implants. We investigated the characteristics of the laser RFA and compared them with the conventional methods. We inserted a pedicle screw in the vertebral pedicle of human cadaver or model bone, followed by screw pull-out, peak torque, implant stability quotient (ISQ) value obtained by the magnetic dental RFA system, and fixation force of laser RFA. We compared the outcomes using best-fit linear or logarithmic approximations. For the model bone study, the resonance frequency (RF) versus peak torque/pull-out force (POF) demonstrated strong correlations using logarithmic approximation (vs. peak torque: R = 0.931, p < .001, vs. POF: R = 0.931, p < .001). RF strongly correlated with the ISQ value using linear approximation (R = 0.981, p < .001). For the cadaveric vertebrae study, the correlation coefficients between RF and the peak torque/POF were significant regardless of approximation method (peak torque: logarithmic: R = 0.716 vs. linear: R = 0.811; p < .001) (POF: logarithmic: R = 0.644 vs. linear: R = 0.548; p < .05). Thus, the results of this study revealed a constant correlation between RFA and conventional methods as a measurement validation, predicting favorable support for intraoperative PSF. RFA has the potential to be a new index for evaluating the implant fixation force.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Katsuhiro Mikami
- Faculty of Biology‐Oriented Science and Technology, Kindai UniversityKinokawaWakayamaJapan
| | - Shunsuke Kikuchi
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Masaharu Nishikino
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Toshiyuki Kitamura
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Noboru Hasegawa
- The National Institutes for Quantum and Radiological Science and Technology Quantum Beam Science Research Directorate Kansai Photon Science InstituteKyotoJapan
| | - Morio Matsumoto
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Masaya Nakamura
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan
| | - Takeo Nagura
- Department of Orthopedic SurgeryKeio University School of Medicine, ShinjukuTokyoJapan,Department of Clinical BiomechanicsKeio University School of Medicine, ShinjukuTokyoJapan
| |
Collapse
|
2
|
Sim SG, Woo YJ, Kim DY, Hwang SJ, Hwang KT, Lee CH, Yoon GH. Experimental study of the effect of the boundary conditions of fractured bone. J Mech Behav Biomed Mater 2021; 124:104801. [PMID: 34544018 DOI: 10.1016/j.jmbbm.2021.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Reliable fracture diagnosis monitoring and analyzing low-frequency transverse vibration data can be achieved through an in-depth understanding of the physical interactions between wave propagation and boundary conditions. The present study aims to investigate the effects of the boundary conditions on the low-frequency structural vibrations of bones. Time-frequency domain analysis of transverse vibration signals depending on the boundary conditions of bones is analyzed and investigated. These studies reveal that the responses of fractured or non-fractured bones are different and influenced by the displacement and force boundary conditions. These relationships can be considered in the development of a smart fracture diagnosis system considering the posture and boundary condition. To validate the present observations, the experiments with artificial specimens and cadaver are carried.
Collapse
Affiliation(s)
- Seong-Gyu Sim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yeon-Jun Woo
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong-Yoon Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Se Jin Hwang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kyu Tae Hwang
- Department of Orthopaedic Surgery, College of Medicine Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang-Hun Lee
- Department of Orthopaedic Surgery, College of Medicine Hanyang University, Seoul, 04763, Republic of Korea
| | - Gil Ho Yoon
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Goossens Q, Pastrav L, Roosen J, Mulier M, Desmet W, Vander Sloten J, Denis K. Acoustic analysis to monitor implant seating and early detect fractures in cementless THA: An in vivo study. J Orthop Res 2021; 39:1164-1173. [PMID: 32844506 DOI: 10.1002/jor.24837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The initial stability of cementless total hip arthroplasty (THA) implants is obtained by an interference fit that allows osseointegration for a long term secondary stability of the implant. Yet, finding the insertion endpoint that corresponds to an appropriate initial stability is currently often based on a number of subjective experiences of the orthopedic surgeon, which can be challenging. In order to assist the orthopedic surgeons in their pursuit to find this optimal initial stability, this study aims to determine whether the analysis of sound that results from the implant insertion hammer blows can be used to objectively monitor the insertion process of cementless THA implants. An in vivo study was conducted. The experimental results revealed vibro-acoustic behavior sensitive to implant seating, related to the low frequency content of the response spectra. This sensitive low-frequency behavior was quantified by a set of specific vibro-acoustic features and metrics that reflected the power and similarity of the low-frequency response. These features and metrics allowed monitoring the implant seating and their convergence agreed well with the endpoint of insertion as determined by the orthopedic surgeon. Intraoperative fractures caused an abrupt and opposite change of the vibro-acoustic behavior prior to the notification of the fracture by the orthopedic surgeon. The observation of such an abrupt change in the vibro-acoustic behavior can be an important early warning for loss of implant stability. The presented vibro-acoustic measurement method shows potential to serve as a decision supporting source of information as it showed to reflect the implant seating.
Collapse
Affiliation(s)
- Quentin Goossens
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Leonard Pastrav
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorg Roosen
- Division of Orthopedics, University Hospital Leuven, Leuven, Belgium
| | - Michiel Mulier
- Division of Orthopedics, University Hospital Leuven, Leuven, Belgium
| | - Wim Desmet
- MSD Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Kathleen Denis
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci Rep 2021; 11:3449. [PMID: 33568680 PMCID: PMC7876021 DOI: 10.1038/s41598-021-82589-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Instrumented implants are being developed with a radically innovative design to significantly reduce revision surgeries. Although bone replacements are among the most prevalent surgeries performed worldwide, implant failure rate usually surpasses 10%. High sophisticated multifunctional bioelectronic implants are being researched to incorporate cosurface capacitive architectures with ability to deliver personalized electric stimuli to peri-implant target tissues. However, the ability of these architectures to detect bone-implant interface states has never been explored. Moreover, although more than forty technologies were already proposed to detect implant loosening, none is able to ensure effective monitoring of the bone-implant debonding, mainly during the early stages of loosening. This work shows, for the first time, that cosurface capacitive sensors are a promising technology to provide an effective monitoring of bone-implant interfaces during the daily living of patients. Indeed, in vitro experimental tests and simulation with computational models highlight that both striped and circular capacitive architectures are able to detect micro-scale and macro-scale interface bonding, debonding or loosening, mainly when bonding is weakening or loosening is occurring. The proposed cosurface technologies hold potential to implement highly effective and personalized sensing systems such that the performance of multifunctional bioelectronic implants can be strongly improved. Findings were reported open a new research line on sensing technologies for bioelectronic implants, which may conduct to great impacts in the coming years.
Collapse
|
5
|
Goossens Q, Vancleef S, Leuridan S, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. The Use of a Vibro-Acoustic Based Method to Determine the Composite Material Properties of a Replicate Clavicle Bone Model. J Funct Biomater 2020; 11:jfb11040069. [PMID: 32987709 PMCID: PMC7712050 DOI: 10.3390/jfb11040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Replicate bones are widely used as an alternative for cadaveric bones for in vitro testing. These composite bone models are more easily available and show low inter-specimen variability compared to cadaveric bone models. The combination of in vitro testing with in silico models can provide further insights in the evaluation of the mechanical behavior of orthopedic implants. An accurate numerical representation of the experimental model is important to draw meaningful conclusions from the numerical predictions. This study aims to determine the elastic material constants of a commonly used composite clavicle model by combining acoustic experimental and numerical modal analysis. The difference between the experimental and finite element (FE) predicted natural frequencies was minimized by updating the elastic material constants of the transversely isotropic cortical bone analogue that are provided by the manufacturer. The longitudinal Young's modulus was reduced from 16.00 GPa to 12.88 GPa and the shear modulus was increased from 3.30 GPa to 4.53 GPa. These updated material properties resulted in an average natural frequency difference of 0.49% and a maximum difference of 1.73% between the FE predictions and the experimental results. The presented updated model aims to improve future research that focuses on mechanical simulations with clavicle composite bone models.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
- Correspondence:
| | - Sanne Vancleef
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Steven Leuridan
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Michiel Mulier
- Division of Orthopaedics, University Hospital Leuven, 3000 Leuven, Belgium;
| | - Wim Desmet
- Department of Mechanical Engineering, MSD Section, KU Leuven, 3000 Leuven, Belgium;
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| | - Kathleen Denis
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium; (S.V.); (S.L.); (L.C.P.); (J.V.S.); (K.D.)
| |
Collapse
|
6
|
Cachão JH, Soares dos Santos MP, Bernardo R, Ramos A, Bader R, Ferreira JAF, Torres Marques A, Simões JAO. Altering the Course of Technologies to Monitor Loosening States of Endoprosthetic Implants. SENSORS 2019; 20:s20010104. [PMID: 31878028 PMCID: PMC6982938 DOI: 10.3390/s20010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/02/2023]
Abstract
Musculoskeletal disorders are becoming an ever-growing societal burden and, as a result, millions of bone replacements surgeries are performed per year worldwide. Despite total joint replacements being recognized among the most successful surgeries of the last century, implant failure rates exceeding 10% are still reported. These numbers highlight the necessity of technologies to provide an accurate monitoring of the bone–implant interface state. This study provides a detailed review of the most relevant methodologies and technologies already proposed to monitor the loosening states of endoprosthetic implants, as well as their performance and experimental validation. A total of forty-two papers describing both intracorporeal and extracorporeal technologies for cemented or cementless fixation were thoroughly analyzed. Thirty-eight technologies were identified, which are categorized into five methodologies: vibrometric, acoustic, bioelectric impedance, magnetic induction, and strain. Research efforts were mainly focused on vibrometric and acoustic technologies. Differently, approaches based on bioelectric impedance, magnetic induction and strain have been less explored. Although most technologies are noninvasive and are able to monitor different loosening stages of endoprosthetic implants, they are not able to provide effective monitoring during daily living of patients.
Collapse
Affiliation(s)
- João Henrique Cachão
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco P. Soares dos Santos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Correspondence:
| | - Rodrigo Bernardo
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Ramos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rainer Bader
- Department of Orthopedics, University Medicine Rostock, 18057 Rostock, Germany
| | - Jorge A. F. Ferreira
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Torres Marques
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Mechanical Engineering Department, University of Porto, 4200-465 Porto, Portugal
| | - José A. O. Simões
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Nakashima D, Ishii K, Matsumoto M, Nakamura M, Nagura T. A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS One 2018; 13:e0199362. [PMID: 29953480 PMCID: PMC6023144 DOI: 10.1371/journal.pone.0199362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022] Open
Abstract
Pull-out force and insertion torque have not been generally used as intraoperative measures for the evaluation of pedicle screw stability because of their invasiveness. On the other hand, resonance frequency analysis is a non-invasive and repeatable technique that has been clinically used in dentistry to evaluate implant stability e.g. by the Osstell apparatus. In this study, the characteristics of the implant stability quotient (ISQ) value obtained by the Osstell apparatus in the field of spinal surgery were investigated. Biomechanical test materials simulating human bone were used to provide a comparative platform for evaluating each fixation strength measure, including pull-out force, insertion torque, and the ISQ value. To perform pull-out force measurement and to repeat pedicle screw insertion and removal, loosening was artificially created, and its effect was investigated. The grade of loosening was quantified on a micro-CT image after pedicle screw removal. In the comparison of the 3 fixation strength measures, the correlations of the ISQ value with the pull-out force (R2 = 0.339 p <0.0001) and the insertion torque (R2 = 0.337 p <0.0001) were lower than the correlation between pull-out force and insertion torque (R2 = 0.918 p <0.0001). On a micro-CT study, the material volume of the internal threads disappeared after destruction of its integrity due to repeated pedicle screw insertion and removal. Material integrity destruction of the internal threads decreased only the pull-out force and the insertion torque, but it did not affect the ISQ value. The ISQ value only decreased when the material volume of the internal threads disappeared, probably because the ISQ value reflects the resistance against a force in the perpendicular direction of the screw, unlike the conventional measures of fixation strength, such as pull-out force and insertion torque, which reflect axial load.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Ken Ishii
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopedic Surgery, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takeo Nagura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|