1
|
Kim J, Lee JH, Choi EA, Lee HJ, Oh J, Byeon DH, Park CH. A comparative in vitro study of distinct and novel stent geometries on mechanical performances of poly-L-lactic acid cardiovascular stents. Artif Organs 2025; 49:239-255. [PMID: 39445696 DOI: 10.1111/aor.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Poly-L-lactic acid (PLLA) is one of the representative polymeric materials serving as bioresorbable stents (BRS) for cardiovascular disease due to its proper biodegradation, high biocompatibility, and adequate mechanical properties among polymer candidates for BRS. However, PLLA BRS as cardiovascular stents also have limitations because their mechanical properties including low radial strength and high elastic recoil are inferior to those of metallic-based BRS stents. METHODS In the study, we developed and manufactured distinct and novel types of stent geometries for investigating mechanical properties of thin-walled PLLA BRS (110 μm) for cardiovascular applications. Five key mechanical tests, including radial strength, crimping profile, flexibility, elastic recoil, and foreshortening were performed through a comprehensive analysis. In addition, we applied the finite element method for further validation and insight of mechanical behaviors of the PLLA BRS. RESULTS Results revealed that Model 2 had advantages in high flexibility as well as radial strengths, which would be a proper option for complex and acutely curved lesions. Model 3 would be an optimum selection for stent placement in mild target site due to its strength in minimum elastic recoil. Even though Model 4 showed the highest radial strength, finite element simulation showed that the geometry caused higher maximum stress than that of Model 2 and Model 3 during the crimping process. Model 1 showed the most vulnerable geometry among the tested models in both in vitro and finite element analysis. CONCLUSION Such data may suggest potential guidance in regard to understanding the mechanical behaviors of PLLA BRS as not only applicable cardiovascular but also peripheral and intracranial stents.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jung Ho Lee
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Eun Ae Choi
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyeon Ji Lee
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jin Oh
- Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | | | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Hu X, Li J, Yang J, Cheng J, Zhang Y, Lang J, Liu J, Zhao G, Ni Z. Focus on the crucial deformation region to adjust the comprehensive performance of poly (L-lactic acid) stent. Int J Biol Macromol 2023; 230:123417. [PMID: 36709814 DOI: 10.1016/j.ijbiomac.2023.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
The fully biodegradable polymer stent is considered as the fourth-generation vascular implant with good biocompatibility and long-term therapeutic potential. It has attracted much attention because it overcomes the disadvantage of the permanently implanted metal stent. However, compared with the metal stent, its mechanical properties are slightly inferior, which is an urgent problem. Based on previous studies, fully biodegradable polymer stents are prone to experience cracks and damage in large deformation region during the crimping and expansion process. The large deformation region is mainly located at the ring bend of the stent. We supposed that these damages are the leading causes of weakening the mechanical performance of polymer stents and are mainly affected by the crucial deformation region. For this purpose, this work studies the relationship between different crucial deformation regions and the mechanical performance of the polymer stent. Firstly, the volume of the crucial deformation region is improved by increasing the ring width. Although the radial strength of the stent is enhanced with the increase in ring width, the radial stiffness also increases, and correspondingly, the flexibility of the stent decreases. To obtain acceptable comprehensive mechanical performance, two types of slotting design in critical deformation region were proposed. The proposed slotted stent with a bulge has sufficient radial strength and low radial stiffness, having a good radial support capacity and flexibility. In other words, the proposed stent has improved the radial support without sacrificing flexibility. Overall, different crucial deformation regions cause different degrees of damage to the stent during crimping and expansion, which affects the mechanical properties of the stent. Reasonable structural design of the crucial deformation region is the key to adjust the comprehensive performance of the stent.
Collapse
Affiliation(s)
- Xue Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Junjie Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Juekuan Yang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210044, China
| | - Ji Lang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jinbo Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| |
Collapse
|
3
|
Cheng J, Su J, Tian Y, Hu X, Zhao G, Ni Z. Experimental investigation on the properties of poly (L‐lactic acid) vascular stent after accelerated in vitro degradation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Junjie Su
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Xue Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
4
|
Zhao G, Liu Q, Tian Y, Liu J, Cheng J, Ni Z. Evaluation of mechanical properties of poly(
L
‐lactic acid) braided stents with axial stiffeners. J Appl Polym Sci 2022. [DOI: 10.1002/app.52242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Qingwei Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jinbo Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
5
|
Cheng J, Li J, Deng D, Wu G, Zhou M, Zhao G, Ni Z. Improved mechanical properties of poly(
l
‐lactic acid) stent coated by poly(
d
,
l
‐lactic acid) and poly(
l
‐lactic‐co‐glycolic acid) biopolymer blend. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Junjie Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Dongwen Deng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering Nanjing Forestry University Nanjing China
| | - Min Zhou
- Department of Vascular Surgery The Affiliated Drum Tower Hospital, Nanjing University Medical School Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
6
|
Conway C, Nezami FR, Rogers C, Groothuis A, Squire JC, Edelman ER. Acute Stent-Induced Endothelial Denudation: Biomechanical Predictors of Vascular Injury. Front Cardiovasc Med 2021; 8:733605. [PMID: 34722666 PMCID: PMC8553954 DOI: 10.3389/fcvm.2021.733605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Recent concern for local drug delivery and withdrawal of the first Food and Drug Administration-approved bioresorbable scaffold emphasizes the need to optimize the relationships between stent design and drug release with imposed arterial injury and observed pharmacodynamics. In this study, we examine the hypothesis that vascular injury is predictable from stent design and that the expanding force of stent deployment results in increased circumferential stress in the arterial tissue, which may explain acute injury poststent deployment. Using both numerical simulations and ex vivo experiments on three different stent designs (slotted tube, corrugated ring, and delta wing), arterial injury due to device deployment was examined. Furthermore, using numerical simulations, the consequence of changing stent strut radial thickness on arterial wall shear stress and arterial circumferential stress distributions was examined. Regions with predicted arterial circumferential stress exceeding a threshold of 49.5 kPa compared favorably with observed ex vivo endothelial denudation for the three considered stent designs. In addition, increasing strut thickness was predicted to result in more areas of denudation and larger areas exposed to low wall shear stress. We conclude that the acute arterial injury, observed immediately following stent expansion, is caused by high circumferential hoop stresses in the interstrut region, and denuded area profiles are dependent on unit cell geometric features. Such findings when coupled with where drugs move might explain the drug–device interactions.
Collapse
Affiliation(s)
- Claire Conway
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Trinity Centre for Biomedical Engineering, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Farhad R Nezami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Thoracic and Cardiac Surgery Division, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Campbell Rogers
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,HeartFlow Inc., Redwood City, CA, United States
| | - Adam Groothuis
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - James C Squire
- Department of Electrical and Computer Engineering, Virginia Military Institute, Lexington City, KY, United States
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. MICROMACHINES 2021; 12:mi12080990. [PMID: 34442612 PMCID: PMC8398368 DOI: 10.3390/mi12080990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Li Jiao
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Shuoshuo Pang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Pei Yan
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Xibin Wang
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
- Correspondence:
| |
Collapse
|