1
|
Lazic V, Andreoli F, Almaviva S, Pistilli M, Menicucci I, Ulrich C, Schnürer F, Chirico R. A Novel LIBS Sensor for Sample Examinations on a Crime Scene. SENSORS (BASEL, SWITZERLAND) 2024; 24:1469. [PMID: 38475005 DOI: 10.3390/s24051469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
In this work, we present a compact LIBS sensor developed for characterization of samples on a crime scene following requirements of law enforcement agencies involved in the project. The sensor operates both in a tabletop mode, for aside measurements of swabbed materials or taken fragments, and in handheld mode where the sensor head is pointed directly on targets at the scene. The sensor head is connected via an umbilical to an instrument box that could be battery-powered and contains also a color camera for sample visualization, illumination LEDs, and pointing system for placing the target in focus. Here we describe the sensor's architecture and functionalities, the optimization of the acquisition parameters, and the results of some LIBS measurements. On nano-plotted traces at silica wafer and in optimized conditions, for most of the elements the detection limits, in term of the absolute element masses, were found to be below 10 picograms. We also show results obtained on some representative materials, like fingerprints, swabbed soil and gunshot residue, varnishes on metal, and coated plastics. The last, solid samples were used to evaluate the depth profiling capabilities of the instrument, where the recognition of all four car paint layers was achieved.
Collapse
Affiliation(s)
- Violeta Lazic
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-TECFIS-DIM, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Fabrizio Andreoli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-FUSEN-TEN, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Salvatore Almaviva
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-TECFIS-DIM, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Marco Pistilli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-TECFIS-DIM, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Ivano Menicucci
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-TECFIS-DIM, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Christian Ulrich
- Fraunhofer Institute for Chemical Technology ICT, Energetic Materials Department, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal, Germany
| | - Frank Schnürer
- Fraunhofer Institute for Chemical Technology ICT, Energetic Materials Department, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal, Germany
| | - Roberto Chirico
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Laboratory FSN-TECFIS-DIM, Via Enrico Fermi 45, 00044 Frascati, Italy
| |
Collapse
|
2
|
Hao X, Sun P, Tian Y, Pan B. Effect of Plane Mirrors Combined with Au-Nanoparticle Confinement on the Spectral Properties of Fe Plasma Induced by Laser-Induced Breakdown. ACS OMEGA 2022; 7:23605-23610. [PMID: 35847255 PMCID: PMC9281302 DOI: 10.1021/acsomega.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To overcome the shortcomings of low detection sensitivity and high spectral line background noise of traditional laser-induced breakdown spectroscopy (LIBS), a method of combining flat mirrors with gold nanoparticles (Au-NPs) was proposed. First, independent plane mirror and Au-NPs experiments were performed by using aluminum alloy samples. After that, the samples were placed under four conditions (None-LIBS; Three mirrors-LIBS; 20 nm Au-NPs-LIBS; 20 nm Au-NPs and Three mirrors-LIBS), and the differences between various spectral parameters were analyzed. The experimental results show that the optimal number of plane mirrors is 3, and the optimal size of gold nanoparticles is 20 nm. When 20 nm Au-NPs and Three mirrors are used in combination, the plasmonic spectral intensity can be effectively enhanced. The enhancement factor is up to 2.98 (Fe II 240.45 nm), and the signal-to-noise ratio (SNR) is significantly improved up to 10.03. The variation of the plasma temperature between 1 and 5 μs was also investigated, and the experimental results showed that the plasma temperature could be increased by the flat mirror, while the electron temperature was almost unchanged under the action of Au-NPs. It is shown that the combination of the two enhancement methods can effectively increase the spectral intensity and improve the signal-to-noise ratio, which will help to improve the detection performance of the LIBS system.
Collapse
Affiliation(s)
- Xiaojian Hao
- Science and Technology on
Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Peng Sun
- Science and Technology on
Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Yu Tian
- Science and Technology on
Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Baowu Pan
- Science and Technology on
Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|