1
|
Geng X, Yao Y, Huang H, Li Q, Wang L, Fan Y. Mechanical and biological characteristics of 3D-printed auxetic structure in bone tissue engineering. J Biomech 2025; 184:112685. [PMID: 40215656 DOI: 10.1016/j.jbiomech.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
The auxetic structures are highly effective in bone implants due to their unique deformation characteristics. However, ideal tissue engineering scaffolds must possess suitable mechanical properties and biocompatibility. The biological effects of auxetic structures require further study. In this study, three types of 3D re-entrant honeycomb structures with varying angles of 75°, 90°, and 105° were designed. These structures were fabricated by stereolithography 3D printing technology. Finite element simulations and compression tests were conducted to evaluate their mechanical properties. Scaffolds were inoculated with preosteoblast MC3T3-E1 cells, and cyclic loading was applied to investigate the influence of structural and mechanical stimulation on cell arrangement and proliferation. The results demonstrated that the 75° scaffold exhibited auxetic characteristics in all compression directions and possessed anti-fracture properties. The 75° scaffold also promoted cell proliferation by structural design. Cyclic compression facilitated the nuclear translocation of YAP, further enhancing cell growth. The combination of anti-fracture properties and the promotion of cell proliferation makes auxetic structures highly promising for extensive applications.
Collapse
Affiliation(s)
- Xuezheng Geng
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Huiwen Huang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qiao Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
| | - Lizhen Wang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115 Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Heins JI, Merema BBJ, Kraeima J, Witjes MJH, Krushynska AO. Mandibular Implants: A Metamaterial-Based Approach to Reducing Stress Shielding. Adv Healthc Mater 2025; 14:e2500405. [PMID: 40183751 DOI: 10.1002/adhm.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Biomechanical complications, such as stress shielding, bone resorption, and reconstruction failure, are prevalently associated with solid titanium mandible reconstruction plates. This study evaluates the potential of metamaterial designs with porous gyroid microarchitectures, to enhance biomechanical stimulation and mitigate these complications. A novel metamaterial reconstruction plate is compared with solid titanium plates, both patient-specifically designed and fabricated from Ti6Al4 V alloy. Stress shielding is assessed through photoelasticity experiments and validated with finite element analysis (FEA). Transparent mandible models are loaded incrementally (0-1000 N) to analyze stress distributions in the implants, screws, and mandible segments. The metamaterial plate reduces stress concentrations in the distant mandibular regions from the defect, while increasing stress around the screws near the defect, favoring local mechanical stimulation. FEA confirms improved load distribution (p = 0.003). However, the metamaterial plate exhibited a lower load-bearing capacity, failing at 775 N, while the solid plate withstood 1800 N without failure. Yet, the metamaterial design effectively reduced stress shielding, thereby enhancing biomechanical function near critical mandibular regions. Hence, despite their reduced load-bearing capacity, they can, potentially, preserve bone integrity and prevent implant failure that should be validated in future (pre-)clinical studies.
Collapse
Affiliation(s)
- Jorn-Ids Heins
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- 3D Lab, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Bram B J Merema
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- 3D Lab, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Joep Kraeima
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- 3D Lab, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- 3D Lab, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Anastasiia O Krushynska
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, 9747AG, The Netherlands
| |
Collapse
|
3
|
Jin Y, Li J, Fan H, Du J, He Y. Biomechanics and Mechanobiology of Additively Manufactured Porous Load-Bearing Bone Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409955. [PMID: 40244634 DOI: 10.1002/smll.202409955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Given that they can replicate both the biomechanical and mechanobiological functions of natural bone, metal additively manufactured porous load-bearing bone implants present a significant advancement in orthopedic applications. Additive manufacturing (AM) of metals enables precise control over pore geometry, resulting in implants that provide effective mechanical support and minimize stress shielding. In addition to its mechanical benefits, the porous architecture of the implants facilitates essential mechanobiological processes, including the transmission of mechanical signals that regulate cellular processes such as adhesion, proliferation, and differentiation. Before clinical use, the implants should first be engineered to achieve a comparable elastic modulus to native bone, mitigating implant-induced bone resorption while promoting tissue regeneration. It is also noteworthy that the microstructural features of these implants support angiogenesis-a critical process for oxygen and nutrient delivery during bone healing. Despite their potential benefits, challenges remain in balancing mechanical stability for load-bearing applications with biofunctionality for effective integration and controlled degradation. This review comprehensively discusses the biomechanical and mechanobiological factors influencing the design and performance of additively manufactured porous bone implants, highlighting their potential to enhance clinical outcomes in bone repair and regeneration.
Collapse
Affiliation(s)
- Yuan Jin
- Zhejiang-Italy Joint Lab for Smart Materials and Advanced Structures, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhui Li
- Zhejiang-Italy Joint Lab for Smart Materials and Advanced Structures, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Haitao Fan
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Jianke Du
- Zhejiang-Italy Joint Lab for Smart Materials and Advanced Structures, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong He
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Shah MAA, Lü SJ, Zhang JF, Wang JW, Tang W, Luo WC, Lai HX, Yu SB, Sui HJ. Functional morphology of trabecular system in human proximal femur: a perspective from P45 sectional plastination and 3D reconstruction finite element analysis. J Orthop Surg Res 2025; 20:370. [PMID: 40221804 PMCID: PMC11993998 DOI: 10.1186/s13018-025-05773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The trabecular architecture of proximal femur plays a crucial role in hip stability and load distribution and is often ignored in hip fracture fixation due to limited anatomical knowledge. This study analyses trabecular morphology and stress distribution, aiming to provide an anatomical foundation for optimising implant designs. MATERIALS AND METHODS Twenty-one formalin-fixed human pelvises (twelve male, nine female) were prepared using P45 sectional plastination. They were sliced into 3 mm sections in the coronal, sagittal, and horizontal planes and then photographed. A 3D femur model was created from computed tomographic scans and analysed for finite element analysis (FEA) using Mimics, 3-matics, and Abaqus software to simulate static and dynamic loads, visualising stress paths for compressive and tensile regions and identifying fracture-vulnerable zones. RESULTS Two main trabecular systems were identified: the medial and lateral systems. The medial system includes a primary vertical trabecular group extending from the femoral shaft's medial calcar to the head and two primary horizontal groups arching from the lateral shaft, greater trochanter, and femoral neck's anterolateral and posterolateral walls toward the medial side, intersecting with the primary vertical group in the head. Secondary vertical group intersects with secondary horizontal group at the neck-trochanteric junction to form the lateral system. FEA showed peak compressive stress along the vertical groups, calcar, and medial cortex, and tensile stress along the horizontal groups, greater trochanter, and lateral cortex, creating balanced support that stabilises the femoral neck and shaft. CONCLUSION The strength of proximal femur depends on dense cortical bone, calcar femorale, lateral and medial trabecular systems, and greater trochanter. While anterolateral and posterolateral areas of femoral neck and intertrochanteric regions are potential weak zones. Trabecular pattern follows stress paths, optimising load distribution. These insights aid in designing robotic and bionic implants that mimic natural stress patterns, reducing complications.
Collapse
Affiliation(s)
- M Adeel Alam Shah
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Shu-Jun Lü
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Jian-Fei Zhang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Jia-Wei Wang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Wei Tang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Wen-Chao Luo
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Hua-Xun Lai
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China
| | - Sheng-Bo Yu
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China.
| | - Hong-Jin Sui
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
5
|
Sun M, Hu X, Tian L, Yang X, Min L. Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review. Orthop Surg 2024; 16:1801-1815. [PMID: 38961661 PMCID: PMC11293933 DOI: 10.1111/os.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Poisson's ratio in auxetic materials shifts from typically positive to negative, causing lateral expansion during axial tension. This scale-independent characteristic, originating from tailored architectures, exhibits specific physical properties, including energy adsorption, shear resistance, and fracture resistance. These metamaterials demonstrate exotic mechanical properties with potential applications in several engineering fields, but biomedical applications seem to be one of the most relevant, with an increasing number of articles published in recent years, which present opportunities ranging from cellular repair to organ reconstruction with outstanding mechanical performance, mechanical conduction, and biological activity compared with traditional biomedical metamaterials. Therefore, focusing on understanding the potential of these structures and promoting theoretical and experimental investigations into the benefits of their unique mechanical properties is necessary for achieving high-performance biomedical applications. Considering the demand for advanced biomaterial implants in surgical technology and the profound advancement of additive manufacturing technology that are particularly relevant to fabricating complex and customizable auxetic mechanical metamaterials, this review focuses on the fundamental geometric configuration and unique physical properties of negative Poisson's ratio materials, then categorizes and summarizes auxetic material applications across some surgical departments, revealing efficacy in joint surgery, spinal surgery, trauma surgery, and sports medicine contexts. Additionally, it emphasizes the substantial potential of auxetic materials as innovative biomedical solutions in orthopedics and demonstrates the significant potential for comprehensive surgical application in the future.
Collapse
Affiliation(s)
- Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| | - Leilei Tian
- Department of AnesthesiologyWest China Hospital, Sichuan University/West China School of Nursing, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
- Provincial Engineering Research Center for Biomaterials Genome of SichuanSichuan UniversityChengduChina
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan ProvinceChengduChina
| |
Collapse
|
6
|
Mirzaali MJ, Zadpoor AA. Orthopedic meta-implants. APL Bioeng 2024; 8:010901. [PMID: 38250670 PMCID: PMC10799688 DOI: 10.1063/5.0179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Meta-biomaterials, engineered materials with distinctive combinations of mechanical, physical, and biological properties stemming from their micro-architecture, have emerged as a promising domain within biomedical engineering. Correspondingly, meta-implants, which serve as the device counterparts of meta-biomaterials, offer exceptional functionalities, holding great potential for addressing complex skeletal diseases. This paper presents a comprehensive overview of the various types of meta-implants, including hybrid, shape-morphing, metallic clay, and deployable meta-implants, highlighting their unprecedented properties and recent achievement in the field. This paper also delves into the potential future developments of meta-implants, addressing the exploration of multi-functionalities in meta-biomaterials and their applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| |
Collapse
|
7
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
8
|
Jia W, Zhou Z, Zhan W. Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound. J Funct Biomater 2023; 14:504. [PMID: 37888169 PMCID: PMC10607075 DOI: 10.3390/jfb14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical biophysical stimulating strategies, which have significant effects on improving the function of organs or treating diseases by causing the salutary response of body, have shown many advantages, such as non-invasiveness, few side effects, and controllable treatment process. As a critical technique for stimulation, the low intensity pulsed ultrasound (LIPUS) has been explored in regulating osteogenesis, which has presented great promise in bone repair by delivering a combined effect with biomaterials. This review summarizes the musculoskeletal biomaterials that can be synergized with LIPUS for enhanced biomedical application, including bone regeneration, spinal fusion, osteonecrosis/osteolysis, cartilage repair, and nerve regeneration. Different types of biomaterials are categorized for summary and evaluation. In each subtype, the verified biological mechanisms are listed in a table or graphs to prove how LIPUS was effective in improving musculoskeletal tissue regeneration. Meanwhile, the acoustic excitation parameters of LIPUS that were promising to be effective for further musculoskeletal tissue engineering are discussed, as well as their limitations and some perspectives for future research. Overall, coupled with biomimetic scaffolds and platforms, LIPUS may be a powerful therapeutic approach to accelerate musculoskeletal tissue repair and even in other regenerative medicine applications.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
9
|
Tatullo M, Ambrogio G, Sammartino G. Advances in Dental Implants, Tissue Engineering and Prosthetic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5871. [PMID: 37687564 PMCID: PMC10489074 DOI: 10.3390/ma16175871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Scientific research has achieved numerous milestones in the field of materials applied to medicine for biomedical prosthetics [...].
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Ambrogio
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University “Federico II” of Naples, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|