1
|
Chang JM, Lee W, Bahl M. Clinical Application of Artificial Intelligence in Digital Breast Tomosynthesis. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:205-215. [PMID: 40201610 PMCID: PMC11973105 DOI: 10.3348/jksr.2025.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Digital breast tomosynthesis (DBT) provides improved cancer detection and lower recall rates when compared with full-field digital mammography (DM) and has been widely adopted for breast cancer screening. However, adopting DBT presents new challenges such as an increased number of acquired images resulting in longer interpretation times. Artificial intelligence (AI) offers numerous opportunities to enhance the advantages of DBT and mitigate its shortcomings. Research in the DBT AI domain has grown significantly and AI algorithms play a key role in the screening and diagnostic phases of breast cancer detection and characterization. The application of AI may streamline the workflow and reduce the time required for radiologists to interpret images. In addition, AI can minimize radiation exposure and enhance lesion visibility in synthetic two-dimensional DM images. This review provides an overview of AI technology in DBT, its clinical applications, and future considerations.
Collapse
|
2
|
Xu YD, Tang Y, Zhang Q, Zhao ZY, Zhao CK, Fan PL, Jin YJ, Ji ZB, Han H, Xu HX, Shi YL, Xu BH, Li XL. Automatic detection of thyroid nodules with a real-time artificial intelligence system in a real clinical scenario and the associated influencing factors. Clin Hemorheol Microcirc 2024; 87:437-450. [PMID: 38489169 DOI: 10.3233/ch-242099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND At present, most articles mainly focused on the diagnosis of thyroid nodules by using artificial intelligence (AI), and there was little research on the detection performance of AI in thyroid nodules. OBJECTIVE To explore the value of a real-time AI based on computer-aided diagnosis system in the detection of thyroid nodules and to analyze the factors influencing the detection accuracy. METHODS From June 1, 2022 to December 31, 2023, 224 consecutive patients with 587 thyroid nodules were prospective collected. Based on the detection results determined by two experienced radiologists (both with more than 15 years experience in thyroid diagnosis), the detection ability of thyroid nodules of radiologists with different experience levels (junior radiologist with 1 year experience and senior radiologist with 5 years experience in thyroid diagnosis) and real-time AI were compared. According to the logistic regression analysis, the factors influencing the real-time AI detection of thyroid nodules were analyzed. RESULTS The detection rate of thyroid nodules by real-time AI was significantly higher than that of junior radiologist (P = 0.013), but lower than that of senior radiologist (P = 0.001). Multivariate logistic regression analysis showed that nodules size, superior pole, outside (near carotid artery), close to vessel, echogenicity (isoechoic, hyperechoic, mixed-echoic), morphology (not very regular, irregular), margin (unclear), ACR TI-RADS category 4 and 5 were significant independent influencing factors (all P < 0.05). With the combination of real-time AI and radiologists, junior and senior radiologist increased the detection rate to 97.4% (P < 0.001) and 99.1% (P = 0.015) respectively. CONCLUSONS The real-time AI has good performance in thyroid nodule detection and can be a good auxiliary tool in the clinical work of radiologists.
Collapse
Affiliation(s)
- Ya-Dan Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yang Tang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Zheng-Yong Zhao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chong-Ke Zhao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pei-Li Fan
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Yun-Jie Jin
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Zheng-Biao Ji
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | | | - Ben-Hua Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Xiao-Long Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Gao M, Fessler JA, Chan HP. Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach. Phys Med Biol 2023; 68:245024. [PMID: 37988758 PMCID: PMC10719554 DOI: 10.1088/1361-6560/ad0eb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity.Approach. We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs.Main results. We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs.Significance. The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
Collapse
Affiliation(s)
- Mingjie Gao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Fessler
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Heang-Ping Chan
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
4
|
Moriakov N, Sonke JJ, Teuwen J. End-to-end memory-efficient reconstruction for cone beam CT. Med Phys 2023; 50:7579-7593. [PMID: 37846969 DOI: 10.1002/mp.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Cone beam computed tomography (CBCT) plays an important role in many medical fields nowadays. Unfortunately, the potential of this imaging modality is hampered by lower image quality compared to the conventional CT, and producing accurate reconstructions remains challenging. A lot of recent research has been directed towards reconstruction methods relying on deep learning, which have shown great promise for various imaging modalities. However, practical application of deep learning to CBCT reconstruction is complicated by several issues, such as exceedingly high memory costs of deep learning methods when working with fully 3D data. Additionally, deep learning methods proposed in the literature are often trained and evaluated only on data from a specific region of interest, thus raising concerns about possible lack of generalization to other regions. PURPOSE In this work, we aim to address these limitations and propose LIRE: a learned invertible primal-dual iterative scheme for CBCT reconstruction. METHODS LIRE is a learned invertible primal-dual iterative scheme for CBCT reconstruction, wherein we employ a U-Net architecture in each primal block and a residual convolutional neural network (CNN) architecture in each dual block. Memory requirements of the network are substantially reduced while preserving its expressive power through a combination of invertible residual primal-dual blocks and patch-wise computations inside each of the blocks during both forward and backward pass. These techniques enable us to train on data with isotropic 2 mm voxel spacing, clinically-relevant projection count and detector panel resolution on current hardware with 24 GB video random access memory (VRAM). RESULTS Two LIRE models for small and for large field-of-view (FoV) setting were trained and validated on a set of 260 + 22 thorax CT scans and tested using a set of 142 thorax CT scans plus an out-of-distribution dataset of 79 head and neck CT scans. For both settings, our method surpasses the classical methods and the deep learning baselines on both test sets. On the thorax CT set, our method achieves peak signal-to-noise ratio (PSNR) of 33.84 ± 2.28 for the small FoV setting and 35.14 ± 2.69 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. On the head and neck CT set, our method achieves PSNR of 39.35 ± 1.75 for the small FoV setting and 41.21 ± 1.41 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. Additionally, we demonstrate that LIRE can be finetuned to reconstruct high-resolution CBCT data with the same geometry but 1 mm voxel spacing and higher detector panel resolution, where it outperforms the U-Net baseline as well. CONCLUSIONS Learned invertible primal-dual schemes with additional memory optimizations can be trained to reconstruct CBCT volumes directly from the projection data with clinically-relevant geometry and resolution. Such methods can offer better reconstruction quality and generalization compared to classical deep learning baselines.
Collapse
Affiliation(s)
- Nikita Moriakov
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jonas Teuwen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
5
|
Tsarouchi MI, Hoxhaj A, Mann RM. New Approaches and Recommendations for Risk-Adapted Breast Cancer Screening. J Magn Reson Imaging 2023; 58:987-1010. [PMID: 37040474 DOI: 10.1002/jmri.28731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Population-based breast cancer screening using mammography as the gold standard imaging modality has been in clinical practice for over 40 years. However, the limitations of mammography in terms of sensitivity and high false-positive rates, particularly in high-risk women, challenge the indiscriminate nature of population-based screening. Additionally, in light of expanding research on new breast cancer risk factors, there is a growing consensus that breast cancer screening should move toward a risk-adapted approach. Recent advancements in breast imaging technology, including contrast material-enhanced mammography (CEM), ultrasound (US) (automated-breast US, Doppler, elastography US), and especially magnetic resonance imaging (MRI) (abbreviated, ultrafast, and contrast-agent free), may provide new opportunities for risk-adapted personalized screening strategies. Moreover, the integration of artificial intelligence and radiomics techniques has the potential to enhance the performance of risk-adapted screening. This review article summarizes the current evidence and challenges in breast cancer screening and highlights potential future perspectives for various imaging techniques in a risk-adapted breast cancer screening approach. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Marialena I Tsarouchi
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alma Hoxhaj
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ritse M Mann
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Champendal M, Marmy L, Malamateniou C, Sá Dos Reis C. Artificial intelligence to support person-centred care in breast imaging - A scoping review. J Med Imaging Radiat Sci 2023; 54:511-544. [PMID: 37183076 DOI: 10.1016/j.jmir.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
AIM To overview Artificial Intelligence (AI) developments and applications in breast imaging (BI) focused on providing person-centred care in diagnosis and treatment for breast pathologies. METHODS The scoping review was conducted in accordance with the Joanna Briggs Institute methodology. The search was conducted on MEDLINE, Embase, CINAHL, Web of science, IEEE explore and arxiv during July 2022 and included only studies published after 2016, in French and English. Combination of keywords and Medical Subject Headings terms (MeSH) related to breast imaging and AI were used. No keywords or MeSH terms related to patients, or the person-centred care (PCC) concept were included. Three independent reviewers screened all abstracts and titles, and all eligible full-text publications during a second stage. RESULTS 3417 results were identified by the search and 106 studies were included for meeting all criteria. Six themes relating to the AI-enabled PCC in BI were identified: individualised risk prediction/growth and prediction/false negative reduction (44.3%), treatment assessment (32.1%), tumour type prediction (11.3%), unnecessary biopsies reduction (5.7%), patients' preferences (2.8%) and other issues (3.8%). The main BI modalities explored in the included studies were magnetic resonance imaging (MRI) (31.1%), mammography (27.4%) and ultrasound (23.6%). The studies were predominantly retrospective, and some variations (age range, data source, race, medical imaging) were present in the datasets used. CONCLUSIONS The AI tools for person-centred care are mainly designed for risk and cancer prediction and disease management to identify the most suitable treatment. However, further studies are needed for image acquisition optimisation for different patient groups, improvement and customisation of patient experience and for communicating to patients the options and pathways of disease management.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Laurent Marmy
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| | - Christina Malamateniou
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH; Department of Radiography, Division of Midwifery and Radiography, School of Health Sciences, University of London, London, UK.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO; University of Applied Sciences Western Switzerland: Lausanne, CH.
| |
Collapse
|
7
|
Kim H, Lee H, Lee S, Choi YW, Choi YJ, Kim KH, Seo W, Shin CW, Cho S. A feasibility study on deep-neural-network-based dose-neutral dual-energy digital breast tomosynthesis. Med Phys 2023; 50:791-807. [PMID: 36273397 DOI: 10.1002/mp.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Diagnostic performance based on x-ray breast imaging is subject to breast density. Although digital breast tomosynthesis (DBT) is reported to outperform conventional mammography in denser breasts, mass detection and malignancy characterization are often considered challenging yet. PURPOSE As an improved diagnostic solution to the dense breast cases, we propose a dual-energy DBT imaging technique that enables breast compositional imaging at comparable scanning time and patient dose compared to the conventional single-energy DBT. METHODS The proposed dual-energy DBT acquires projection data by alternating two different energy spectra. Then, we synthesize unmeasured projection data using a deep neural network that exploits the measured projection data and adjacent projection data obtained under the other x-ray energy spectrum. For material decomposition, we estimate partial path lengths of an x-ray through water, lipid, and protein from the measured and the synthesized projection data with the object thickness information. After material decomposition in the projection domain, we reconstruct material-selective DBT images. The deep neural network is trained with the numerical breast phantoms. A pork meat phantom is scanned with a prototype dual-energy DBT system to demonstrate the feasibility of the proposed imaging method. RESULTS The developed deep neural network successfully synthesized missing projections. Material-selective images reconstructed from the synthesized data present comparable compositional contrast of the cancerous masses compared with those from the fully measured data. CONCLUSIONS The proposed dual-energy DBT scheme is expected to substantially contribute to enhancing mass malignancy detection accuracy particularly in dense breasts.
Collapse
Affiliation(s)
- Hyeongseok Kim
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seoyoung Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Young-Wook Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | - Young Jin Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | - Kee Hyun Kim
- Korea Electrotechnology Research Institute (KERI), Ansan, South Korea
| | | | | | - Seungryong Cho
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,KAIST Institute for IT Convergence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
8
|
Vedantham S, Shazeeb MS, Chiang A, Vijayaraghavan GR. Artificial Intelligence in Breast X-Ray Imaging. Semin Ultrasound CT MR 2023; 44:2-7. [PMID: 36792270 PMCID: PMC9932302 DOI: 10.1053/j.sult.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This topical review is focused on the clinical breast x-ray imaging applications of the rapidly evolving field of artificial intelligence (AI). The range of AI applications is broad. AI can be used for breast cancer risk estimation that could allow for tailoring the screening interval and the protocol that are woman-specific and for triaging the screening exams. It also can serve as a tool to aid in the detection and diagnosis for improved sensitivity and specificity and as a tool to reduce radiologists' reading time. AI can also serve as a potential second 'reader' during screening interpretation. During the last decade, numerous studies have shown the potential of AI-assisted interpretation of mammography and to a lesser extent digital breast tomosynthesis; however, most of these studies are retrospective in nature. There is a need for prospective clinical studies to evaluate these technologies to better understand their real-world efficacy. Further, there are ethical, medicolegal, and liability concerns that need to be considered prior to the routine use of AI in the breast imaging clinic.
Collapse
Affiliation(s)
| | | | - Alan Chiang
- Department of Medical Imaging, University of Arizona, Tucson, AZ
| | | |
Collapse
|
9
|
Goldberg JE, Reig B, Lewin AA, Gao Y, Heacock L, Heller SL, Moy L. New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis. Radiographics 2023; 43:e220060. [DOI: 10.1148/rg.220060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia E. Goldberg
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Beatriu Reig
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Alana A. Lewin
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Yiming Gao
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Laura Heacock
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Samantha L. Heller
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| | - Linda Moy
- From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016
| |
Collapse
|
10
|
Marshall NW, Bosmans H. Performance evaluation of digital breast tomosynthesis systems: physical methods and experimental data. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Digital breast tomosynthesis (DBT) has become a well-established breast imaging technique, whose performance has been investigated in many clinical studies, including a number of prospective clinical trials. Results from these studies generally point to non-inferiority in terms of microcalcification detection and superior mass-lesion detection for DBT imaging compared to digital mammography (DM). This modality has become an essential tool in the clinic for assessment and ad-hoc screening but is not yet implemented in most breast screening programmes at a state or national level. While evidence on the clinical utility of DBT has been accumulating, there has also been progress in the development of methods for technical performance assessment and quality control of these imaging systems. DBT is a relatively complicated ‘pseudo-3D’ modality whose technical assessment poses a number of difficulties. This paper reviews methods for the technical performance assessment of DBT devices, starting at the component level in part one and leading up to discussion of system evaluation with physical test objects in part two. We provide some historical and basic theoretical perspective, often starting from methods developed for DM imaging. Data from a multi-vendor comparison are also included, acquired under the medical physics quality control protocol developed by EUREF and currently being consolidated by a European Federation of Organisations for Medical Physics working group. These data and associated methods can serve as a reference for the development of reference data and provide some context for clinical studies.
Collapse
|
11
|
Bhowmik A, Eskreis-Winkler S. Deep learning in breast imaging. BJR Open 2022; 4:20210060. [PMID: 36105427 PMCID: PMC9459862 DOI: 10.1259/bjro.20210060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Millions of breast imaging exams are performed each year in an effort to reduce the morbidity and mortality of breast cancer. Breast imaging exams are performed for cancer screening, diagnostic work-up of suspicious findings, evaluating extent of disease in recently diagnosed breast cancer patients, and determining treatment response. Yet, the interpretation of breast imaging can be subjective, tedious, time-consuming, and prone to human error. Retrospective and small reader studies suggest that deep learning (DL) has great potential to perform medical imaging tasks at or above human-level performance, and may be used to automate aspects of the breast cancer screening process, improve cancer detection rates, decrease unnecessary callbacks and biopsies, optimize patient risk assessment, and open up new possibilities for disease prognostication. Prospective trials are urgently needed to validate these proposed tools, paving the way for real-world clinical use. New regulatory frameworks must also be developed to address the unique ethical, medicolegal, and quality control issues that DL algorithms present. In this article, we review the basics of DL, describe recent DL breast imaging applications including cancer detection and risk prediction, and discuss the challenges and future directions of artificial intelligence-based systems in the field of breast cancer.
Collapse
Affiliation(s)
- Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
12
|
Koyuncu B, Melek A, Yilmaz D, Tuzer M, Unlu MB. Chemotherapy response prediction with diffuser elapser network. Sci Rep 2022; 12:1628. [PMID: 35102179 PMCID: PMC8803972 DOI: 10.1038/s41598-022-05460-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
In solid tumors, elevated fluid pressure and inadequate blood perfusion resulting from unbalanced angiogenesis are the prominent reasons for the ineffective drug delivery inside tumors. To normalize the heterogeneous and tortuous tumor vessel structure, antiangiogenic treatment is an effective approach. Additionally, the combined therapy of antiangiogenic agents and chemotherapy drugs has shown promising effects on enhanced drug delivery. However, the need to find the appropriate scheduling and dosages of the combination therapy is one of the main problems in anticancer therapy. Our study aims to generate a realistic response to the treatment schedule, making it possible for future works to use these patient-specific responses to decide on the optimal starting time and dosages of cytotoxic drug treatment. Our dataset is based on our previous in-silico model with a framework for the tumor microenvironment, consisting of a tumor layer, vasculature network, interstitial fluid pressure, and drug diffusion maps. In this regard, the chemotherapy response prediction problem is discussed in the study, putting forth a proof of concept for deep learning models to capture the tumor growth and drug response behaviors simultaneously. The proposed model utilizes multiple convolutional neural network submodels to predict future tumor microenvironment maps considering the effects of ongoing treatment. Since the model has the task of predicting future tumor microenvironment maps, we use two image quality evaluation metrics, which are structural similarity and peak signal-to-noise ratio, to evaluate model performance. We track tumor cell density values of ground truth and predicted tumor microenvironments. The model predicts tumor microenvironment maps seven days ahead with the average structural similarity score of 0.973 and the average peak signal ratio of 35.41 in the test set. It also predicts tumor cell density at the end day of 7 with the mean absolute percentage error of [Formula: see text].
Collapse
Affiliation(s)
- Batuhan Koyuncu
- Department of Computer Engineering, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Ahmet Melek
- Department of Management, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey.
- Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Sapporo, 060-8648, Japan.
| |
Collapse
|
13
|
Massera RT, Tomal A. Breast glandularity and mean glandular dose assessment using a deep learning framework: Virtual patients study. Phys Med 2021; 83:264-277. [PMID: 33984580 DOI: 10.1016/j.ejmp.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Breast dosimetry in mammography is an important aspect of radioprotection since women are exposed periodically to ionizing radiation due to breast cancer screening programs. Mean glandular dose (MGD) is the standard quantity employed for the establishment of dose reference levels in retrospective population studies. However, MGD calculations requires breast glandularity estimation. This work proposes a deep learning framework for volume glandular fraction (VGF) estimations based on mammography images, which in turn are converted to glandularity values for MGD calculations. METHODS 208 virtual breast phantoms were generated and compressed computationally. The mammography images were obtained with Monte Carlo simulations (MC-GPU code) and a ray-tracing algorithm was employed for labeling the training data. The architectures of the neural networks are based on the XNet and multilayer perceptron, adapted for each task. The network predictions were compared with the ground truth using the coefficient of determination (r2). RESULTS The results have shown a good agreement for inner breast segmentation (r2 = 0.999), breast volume prediction (r2 = 0.982) and VGF prediction (r2 = 0.935). Moreover, the DgN coefficients using the predicted VGF for the virtual population differ on average 1.3% from the ground truth values. Afterwards with the obtained DgN coefficients, the MGD values were estimated from exposure factors extracted from the DICOM header of a clinical cohort, with median(75 percentile) values of 1.91(2.45) mGy. CONCLUSION We successfully implemented a deep learning framework for VGF and MGD calculations for virtual breast phantoms.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil
| | - Alessandra Tomal
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil.
| |
Collapse
|
14
|
Bai J, Posner R, Wang T, Yang C, Nabavi S. Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review. Med Image Anal 2021; 71:102049. [PMID: 33901993 DOI: 10.1016/j.media.2021.102049] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
The relatively recent reintroduction of deep learning has been a revolutionary force in the interpretation of diagnostic imaging studies. However, the technology used to acquire those images is undergoing a revolution itself at the very same time. Digital breast tomosynthesis (DBT) is one such technology, which has transformed the field of breast imaging. DBT, a form of three-dimensional mammography, is rapidly replacing the traditional two-dimensional mammograms. These parallel developments in both the acquisition and interpretation of breast images present a unique case study in how modern AI systems can be designed to adapt to new imaging methods. They also present a unique opportunity for co-development of both technologies that can better improve the validity of results and patient outcomes. In this review, we explore the ways in which deep learning can be best integrated into breast cancer screening workflows using DBT. We first explain the principles behind DBT itself and why it has become the gold standard in breast screening. We then survey the foundations of deep learning methods in diagnostic imaging, and review the current state of research into AI-based DBT interpretation. Finally, we present some of the limitations of integrating AI into clinical practice and the opportunities these present in this burgeoning field.
Collapse
Affiliation(s)
- Jun Bai
- Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA
| | - Russell Posner
- University of Connecticut School of Medicine, 263 Farmington Ave. Farmington, CT 06030, USA
| | - Tianyu Wang
- Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA
| | - Clifford Yang
- University of Connecticut School of Medicine, 263 Farmington Ave. Farmington, CT 06030, USA; Department of Radiology, UConn Health, 263 Farmington Ave. Farmington, CT 06030, USA
| | - Sheida Nabavi
- Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools. Phys Med 2021; 83:25-37. [DOI: 10.1016/j.ejmp.2021.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
|