1
|
Li L, Liu J, Xiao H, Zhou G, Liu Q, Zhang Z. Expert guidance and partially-labeled data collaboration for multi-organ segmentation. Neural Netw 2025; 187:107396. [PMID: 40132452 DOI: 10.1016/j.neunet.2025.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/30/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Abdominal multi-organ segmentation in computed tomography (CT) scans has exhibited successful applications in numerous real clinical scenarios. Nevertheless, prevailing methods for multi-organ segmentation often necessitate either a substantial volume of datasets derived from a single healthcare institution or the centralized storage of patient data obtained from diverse healthcare institutions. This prevailing approach significantly burdens data labeling and collection, thereby exacerbating the associated challenges. Compared to multi organ annotation labels, single organ annotation labels are extremely easy to obtain and have low costs. Therefor, this work establishes an effective collaborative mechanism between multi organ labels and single organ labels, and proposes an expert guided and partially-labeled data collaboration framework for multi organ segmentation, named EGPD-Seg. Firstly, a reward penalty loss function is proposed under the setting of partial labels to make the model more focused on the targets in single organ labels, while suppressing the influence of unlabeled organs on segmentation results. Then, an expert guided module is proposed to enable the model to learn prior knowledge, thereby enabling the model to obtain the ability to segment unlabeled organs on a single organ labeled dataset. The two modules interact with each other and jointly promote the multi organ segmentation performance of the model under label partial settings. This work has been effectively validated on five publicly available abdominal multi organ segmentation datasets, including internal datasets and invisible external datasets. Code: https://github.com/LiLiXJTU/EGPDC-Seg.
Collapse
Affiliation(s)
- Li Li
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 710049, Shaanxi, China
| | - Jianyi Liu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 710049, Shaanxi, China.
| | - Hanguang Xiao
- College of Artificial Intelligent, Chongqing University of Technology, 401135, Chongqing, China
| | - Guanqun Zhou
- JancsiLab, JancsiTech, Hongkong, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Guangdong, China
| | - Qiyuan Liu
- College of Artificial Intelligent, Chongqing University of Technology, 401135, Chongqing, China
| | - Zhicheng Zhang
- JancsiLab, JancsiTech, Hongkong, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Guangdong, China.
| |
Collapse
|
2
|
Ma Y, Wang J, Xu C, Huang Y, Chu M, Fan Z, Xu Y, Wu D. CDAF-Net: A Contextual Contrast Detail Attention Feature Fusion Network for Low-Dose CT Denoising. IEEE J Biomed Health Inform 2025; 29:2048-2060. [PMID: 40030295 DOI: 10.1109/jbhi.2024.3506785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Low-dose computed tomography (LDCT) is a specialized CT scan with a lower radiation dose than normal-dose CT. However, the reduced radiation dose can introduce noise and artifacts, affecting diagnostic accuracy. To enhance the LDCT image quality, we propose a Contextual Contrast Detail Attention Feature Fusion Network (CDAF-Net) for LDCT denoising. Firstly, the LDCT image, with dimensions 1 × H × W, is mapped to a feature map with dimensions C × H × W, and it is processed through the Contextual Contrast Detail Attention (CCDA) module and the Selective Kernel Feature Fusion (SKFF) module. The CCDA module combines a global contextual attention mechanism with detail-enhanced differential convolutions to better understand the overall semantics and structure of the LDCT image, capturing subtle changes and details. The SKFF module effectively merges shallow features extracted by the encoder with deep features from the decoder, integrating feature representations from different levels. This process is repeated across four different resolution feature maps, and the denoised LDCT image is output through a skip connection. We conduct experiments on the Mayo dataset, the LDCT-and-Projection-Data dataset, and the Piglet dataset. Specifically, the CDAF-Net achieves the optimal metrics with a PSNR of 33.7262 dB, an SSIM of 0.9254, and an RMSE of 5.3731 on the Mayo dataset. Improvements are also observed in head CT and ultra-low-dose chest CT images of the LDCT-and-Projection-Data dataset and the Piglet dataset. Experimental results show that the proposed CDAF-Net algorithm provides superior denoising performance compared with the state-of-the-art (SOTA) algorithms.
Collapse
|
3
|
Liu J, Liu F, Nie D, Gu Y, Sun Y, Shen D. Structure-Aware Brain Tissue Segmentation for Isointense Infant MRI Data Using Multi-Phase Multi-Scale Assistance Network. IEEE J Biomed Health Inform 2025; 29:1297-1307. [PMID: 39302775 DOI: 10.1109/jbhi.2024.3452310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Accurate and automatic brain tissue segmentation is crucial for tracking brain development and diagnosing brain disorders. However, due to inherently ongoing myelination and maturation during the first postnatal year, the intensity distributions of gray matter and white matter in the infant brain MRI at the age of around 6 months old (a.k.a. isointense phase) are highly overlapped, which makes tissue segmentation very challenging, even for experts. To address this issue, in this study, we propose a multi-phase multi-scale assistance segmentation framework, which comprises a structure-preserved generative adversarial network (SPGAN) and a multi-phase multi-scale assisted segmentation network (MASN). SPGAN bi-directionally synthesizes isointense and adult-like data. The synthetic isointense data essentially augment the training dataset, combined with high-quality annotations transferred from its adult-like counterpart. By contrast, the synthetic adult-like data offers clear tissue structures and is concatenated with isointense data to serve as the input of MASN. In particular, MASN is designed with two-branch networks, which simultaneously segment tissues with two phases (isointense and adult-like) and two scales by also preserving their correspondences. We further propose a boundary refinement module to extract maximum gradients from local feature maps to indicate tissue boundaries, prompting MASN to focus more on boundaries where segmentation errors are prone to occur. Extensive experiments on the National Database for Autism Research and Baby Connectome Project datasets quantitatively and qualitatively demonstrate the superiority of our proposed framework compared with seven state-of-the-art methods.
Collapse
|
4
|
Xu P, Lyu J, Lin L, Cheng P, Tang X. LF-SynthSeg: Label-Free Brain Tissue-Assisted Tumor Synthesis and Segmentation. IEEE J Biomed Health Inform 2025; 29:1101-1112. [PMID: 39480723 DOI: 10.1109/jbhi.2024.3489721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Unsupervised brain tumor segmentation is pivotal in realms of disease diagnosis, surgical planning, and treatment response monitoring, with the distinct advantage of obviating the need for labeled data. Traditional methodologies in this domain, however, often fall short in fully capitalizing on the extensive prior knowledge of brain tissue, typically approaching the task merely as an anomaly detection challenge. In our research, we present an innovative strategy that effectively integrates brain tissues' prior knowledge into both the synthesis and segmentation of brain tumor from T2-weighted Magnetic Resonance Imaging scans. Central to our method is the tumor synthesis mechanism, employing randomly generated ellipsoids in conjunction with the intensity profiles of brain tissues. This methodology not only fosters a significant degree of variation in the tumor presentations within the synthesized images but also facilitates the creation of an essentially unlimited pool of abnormal T2-weighted images. These synthetic images closely replicate the characteristics of real tumor-bearing scans. Our training protocol extends beyond mere tumor segmentation; it also encompasses the segmentation of brain tissues, thereby directing the network's attention to the boundary relationship between brain tumor and brain tissue, thus improving the robustness of our method. We evaluate our approach across five widely recognized public datasets (BRATS 2019, BRATS 2020, BRATS 2021, PED and SSA), and the results show that our method outperforms state-of-the-art unsupervised tumor segmentation methods by large margins. Moreover, the proposed method achieves more than 92 of the fully supervised performance on the same testing datasets.
Collapse
|
5
|
Ghobadi V, Ismail LI, Wan Hasan WZ, Ahmad H, Ramli HR, Norsahperi NMH, Tharek A, Hanapiah FA. Challenges and solutions of deep learning-based automated liver segmentation: A systematic review. Comput Biol Med 2025; 185:109459. [PMID: 39642700 DOI: 10.1016/j.compbiomed.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
Collapse
Affiliation(s)
- Vahideh Ghobadi
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Luthffi Idzhar Ismail
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Wan Zuha Wan Hasan
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Haron Ahmad
- KPJ Specialist Hospital, Damansara Utama, Petaling Jaya, 47400, Selangor, Malaysia.
| | - Hafiz Rashidi Ramli
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | | | - Anas Tharek
- Hospital Sultan Abdul Aziz Shah, University Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Fazah Akhtar Hanapiah
- Faculty of Medicine, Universiti Teknologi MARA, Damansara Utama, Sungai Buloh, 47000, Selangor, Malaysia.
| |
Collapse
|
6
|
Sun Y, Zhang S, Li J, Han Q, Qin Y. CAISeg: A Clustering-Aided Interactive Network for Lesion Segmentation in 3D Medical Imaging. IEEE J Biomed Health Inform 2025; 29:371-382. [PMID: 39321004 DOI: 10.1109/jbhi.2024.3467279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Accurate lesion segmentation in medical imaging is critical for medical diagnosis and treatment. Lesions' diverse and heterogeneous characteristics often present a distinct long-tail distribution, posing difficulties for automatic methods. Currently, interactive segmentation approaches have shown promise in improving accuracy, but still struggle to deal with tail features. This triggers a demand of effective utilizing strategies of user interaction. To this end, we propose a novel point-based interactive segmentation model called Clustering-Aided Interactive Segmentation Network (CAISeg) in 3D medical imaging. A customized Interaction-Guided Module (IGM) adopts the concept of clustering to capture features that are semantically similar to interaction points. These clustered features are then mapped to the head regions of the prompted category to facilitate more precise classification. Meanwhile, we put forward a Focus Guided Loss function to grant the network an inductive bias towards user interaction through assigning higher weights to voxels closer to the prompted points, thereby improving the responsiveness efficiency to user guidance. Evaluation across brain tumor, colon cancer, lung cancer, and pancreas cancer segmentation tasks show CAISeg's superiority over the state-of-the-art methods. It outperforms the fully automated segmentation models in accuracy, and achieves results comparable to or better than those of the leading point-based interactive methods while requiring fewer prompt points. Furthermore, we discover that CAISeg possesses good interpretability at various stages, which endows CAISeg with potential clinical application value.
Collapse
|
7
|
Zhang Z, Yu H, Wang Z, Wang Z, Lu J, Liu Y, Zhang Y. Gradient-Guided Network With Fourier Enhancement for Glioma Segmentation in Multimodal 3D MRI. IEEE J Biomed Health Inform 2024; 28:6778-6790. [PMID: 39231047 DOI: 10.1109/jbhi.2024.3454760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Glioma segmentation is a crucial task in computer-aided diagnosis, requiring precise discrimination between lesions and normal tissue at the pixel level. Popular methods neglect crucial edge information, leading to inaccurate contour delineation. Moreover, global information has been proven beneficial for segmentation. The feature representations extracted by convolution neural networks often struggle with local-related information owing to the limited receptive fields. To address these issues, we propose a novel edge-aware segmentation network that incorporates a dual-path gradient-guided training strategy with Fourier edge-enhancement for precise glioma segmentation, a.k.a. GFNet. First, we introduce a Dual-path Gradient-guided Training strategy (DGT) based on a Siamese network guiding the optimizing direction of one path by the gradient from the other path. DGT pays attention to the indistinguishable pixels with large weight-updating gradient, such as the pixels near the boundary, to guide the network training, addressing hard samples. Second, to further perceive the edge information, we derive a Fourier Edge-enhancement Module (FEM) to augment feature edges with high-frequency representations from the spectral domain, providing global information and edge details. Extensive experiments on public glioma segmentation datasets, BraTS2020 and Medical Segmentation Decathlon (MSD) glioma and prostate segmentation, demonstrate that GFNet achieves competitive performance compared to other state-of-the-art methods, both qualitatively and quantitatively.
Collapse
|
8
|
Wang J, Dai J, Li N, Zhang C, Zhang J, Silayi Z, Wu H, Xie Y, Liang X, Zhang H. Robust Real-Time Cancer Tracking via Dual-Panel X-Ray Images for Precision Radiotherapy. Bioengineering (Basel) 2024; 11:1051. [PMID: 39593711 PMCID: PMC11591208 DOI: 10.3390/bioengineering11111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory-induced tumor motion presents a critical challenge in lung cancer radiotherapy, potentially impacting treatment precision and efficacy. This study introduces an innovative, deep learning-based approach for real-time, markerless lung tumor tracking utilizing orthogonal X-ray projection images. It incorporates three key components: (1) a sophisticated data augmentation technique combining a hybrid deformable model with 3D thin-plate spline transformation, (2) a state-of-the-art Transformer-based segmentation network for precise tumor boundary delineation, and (3) a CNN regression network for accurate 3D tumor position estimation. We rigorously evaluated this approach using both patient data from The Cancer Imaging Archive and dynamic thorax phantom data, assessing performance across various noise levels and comparing it with current leading algorithms. For TCIA patient data, the average DSC and HD95 values were 0.9789 and 1.8423 mm, respectively, with an average centroid localization deviation of 0.5441 mm. On CIRS phantoms, DSCs were 0.9671 (large tumor) and 0.9438 (small tumor) with corresponding HD95 values of 1.8178 mm and 1.9679 mm. The 3D centroid localization accuracy was consistently below 0.33 mm. The processing time averaged 90 ms/frame. Even under high noise conditions (S2 = 25), errors for all data remained within 1 mm with tracking success rates mostly at 100%. In conclusion, the proposed markerless tracking method demonstrates superior accuracy, noise robustness, and real-time performance for lung tumor localization during radiotherapy. Its potential to enhance treatment precision, especially for small tumors, represents a significant step toward improving radiotherapy efficacy and personalizing cancer treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Xincheng, Dongguan 523808, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Jiankai Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Zuledesi Silayi
- Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining 835000, China
| | - Haodi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Yaoqing Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan, Shenzhen 518055, China
| | - Huailing Zhang
- Department of Biomedical Engineering, Guangdong Medical University, Xincheng, Dongguan 523808, China
| |
Collapse
|
9
|
Kimura Y, Ijiri T, Inamoto Y, Hashimoto T, Michiwaki Y. Interactive segmentation with curve-based template deformation for spatiotemporal computed tomography of swallowing motion. PLoS One 2024; 19:e0309379. [PMID: 39432481 PMCID: PMC11493247 DOI: 10.1371/journal.pone.0309379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 10/23/2024] Open
Abstract
Repeating X-ray computed tomography (CT) measurements over a short period of time allows for obtaining a spatiotemporal four-dimensional (4D) volume image. This study presents an interactive method for segmenting a 4DCT image by fitting a template model to a target organ. The template consists of a three-dimensional (3D) mesh model and free-form-deformation (FFD) cage enclosing the mesh. The user deforms the template by placing multiple curve constraints that specify the boundary shape of the template in 3D space. We also present curve constraints shared over all time frames and interpolated along the time axis to facilitate efficient curve specification. Our method formulates the template deformation using the FFD cage modification, allowing the user to switch between our curve-based method and traditional FFD at any time. To illustrate the feasibility of our method, we show segmentation results in which we could accurately segment three organs from a 4DCT image capturing a swallowing motion. To evaluate the usability of our method, we conducted a user study comparing our curve-based method with the cage-based FFD. We found that the participants finished segmentation in approximately 20% interaction time periods on average with our method.
Collapse
Affiliation(s)
- Yuki Kimura
- Shibaura Institute of Technology, Koto-ku, Japan
| | | | | | | | | |
Collapse
|
10
|
Liu J, Zhang Y, Wang K, Yavuz MC, Chen X, Yuan Y, Li H, Yang Y, Yuille A, Tang Y, Zhou Z. Universal and extensible language-vision models for organ segmentation and tumor detection from abdominal computed tomography. Med Image Anal 2024; 97:103226. [PMID: 38852215 DOI: 10.1016/j.media.2024.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme. To overcome these limitations, we propose a universal, extensible framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes (e.g., organs/tumors). Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models, enriching semantic encoding compared with one-hot encoding. Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors and ease the addition of new classes. We train our Universal Model on 3410 CT volumes assembled from 14 publicly available datasets and then test it on 6173 CT volumes from four external datasets. Universal Model achieves first place on six CT tasks in the Medical Segmentation Decathlon (MSD) public leaderboard and leading performance on the Beyond The Cranial Vault (BTCV) dataset. In summary, Universal Model exhibits remarkable computational efficiency (6× faster than other dataset-specific models), demonstrates strong generalization across different hospitals, transfers well to numerous downstream tasks, and more importantly, facilitates the extensibility to new classes while alleviating the catastrophic forgetting of previously learned classes. Codes, models, and datasets are available at https://github.com/ljwztc/CLIP-Driven-Universal-Model.
Collapse
Affiliation(s)
- Jie Liu
- City University of Hong Kong, Hong Kong
| | - Yixiao Zhang
- Johns Hopkins University, United States of America
| | - Kang Wang
- University of California, San Francisco, United States of America
| | - Mehmet Can Yavuz
- University of California, San Francisco, United States of America
| | - Xiaoxi Chen
- University of Illinois Urbana-Champaign, United States of America
| | | | | | - Yang Yang
- University of California, San Francisco, United States of America
| | - Alan Yuille
- Johns Hopkins University, United States of America
| | | | - Zongwei Zhou
- Johns Hopkins University, United States of America.
| |
Collapse
|
11
|
Jain S, Dhir R, Sikka G. View adaptive unified self-supervised technique for abdominal organ segmentation. Comput Biol Med 2024; 177:108659. [PMID: 38823366 DOI: 10.1016/j.compbiomed.2024.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Automatic abdominal organ segmentation is an essential prerequisite for accurate volumetric analysis, disease diagnosis, and tracking by medical practitioners. However, the deformable shapes, variable locations, overlapping with nearby organs, and similar contrast make the segmentation challenging. Moreover, the requirement of a large manually labeled dataset makes it harder. Hence, a semi-supervised contrastive learning approach is utilized to perform the automatic abdominal organ segmentation. Existing 3D deep learning models based on contrastive learning are not able to capture the 3D context of medical volumetric data along three planes/views: axial, sagittal, and coronal views. In this work, a semi-supervised view-adaptive unified model (VAU-model) is proposed to make the 3D deep learning model as view-adaptive to learn 3D context along each view in a unified manner. This method utilizes the novel optimization function that assists the 3D model to learn the 3D context of volumetric medical data along each view in a single model. The effectiveness of the proposed approach is validated on the three types of datasets: BTCV, NIH, and MSD quantitatively and qualitatively. The results demonstrate that the VAU model achieves an average Dice score of 81.61% which is a 3.89% improvement compared to the previous best results for pancreas segmentation in multi-organ dataset BTCV. It also achieves an average Dice score of 77.76% and 76.76% for the pancreas under the single organ non-pathological NIH dataset, and pathological MSD dataset.
Collapse
Affiliation(s)
- Suchi Jain
- Computer Science and Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
| | - Renu Dhir
- Computer Science and Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Geeta Sikka
- Computer Science and Engineering, National Institute of Technology, Delhi, 110036, India
| |
Collapse
|
12
|
Jian M, Jin H, Zhang L, Wei B, Yu H. DBPNDNet: dual-branch networks using 3DCNN toward pulmonary nodule detection. Med Biol Eng Comput 2024; 62:563-573. [PMID: 37945795 DOI: 10.1007/s11517-023-02957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
With the advancement of artificial intelligence, CNNs have been successfully introduced into the discipline of medical data analyzing. Clinically, automatic pulmonary nodules detection remains an intractable issue since those nodules existing in the lung parenchyma or on the chest wall are tough to be visually distinguished from shadows, background noises, blood vessels, and bones. Thus, when making medical diagnosis, clinical doctors need to first pay attention to the intensity cue and contour characteristic of pulmonary nodules, so as to locate the specific spatial locations of nodules. To automate the detection process, we propose an efficient architecture of multi-task and dual-branch 3D convolution neural networks, called DBPNDNet, for automatic pulmonary nodule detection and segmentation. Among the dual-branch structure, one branch is designed for candidate region extraction of pulmonary nodule detection, while the other incorporated branch is exploited for lesion region semantic segmentation of pulmonary nodules. In addition, we develop a 3D attention weighted feature fusion module according to the doctor's diagnosis perspective, so that the captured information obtained by the designed segmentation branch can further promote the effect of the adopted detection branch mutually. The experiment has been implemented and assessed on the commonly used dataset for medical image analysis to evaluate our designed framework. On average, our framework achieved a sensitivity of 91.33% false positives per CT scan and reached 97.14% sensitivity with 8 FPs per scan. The results of the experiments indicate that our framework outperforms other mainstream approaches.
Collapse
Affiliation(s)
- Muwei Jian
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China.
- School of Information Science and Technology, Linyi University, Linyi, China.
| | - Haodong Jin
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
- School of Control Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Linsong Zhang
- School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
| | - Benzheng Wei
- Medical Artificial Intelligence Research Center, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Hui Yu
- School of Control Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Creative Technologies, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
13
|
Dai J, Dong G, Zhang C, He W, Liu L, Wang T, Jiang Y, Zhao W, Zhao X, Xie Y, Liang X. Volumetric tumor tracking from a single cone-beam X-ray projection image enabled by deep learning. Med Image Anal 2024; 91:102998. [PMID: 37857066 DOI: 10.1016/j.media.2023.102998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Radiotherapy serves as a pivotal treatment modality for malignant tumors. However, the accuracy of radiotherapy is significantly compromised due to respiratory-induced fluctuations in the size, shape, and position of the tumor. To address this challenge, we introduce a deep learning-anchored, volumetric tumor tracking methodology that employs single-angle X-ray projection images. This process involves aligning the intraoperative two-dimensional (2D) X-ray images with the pre-treatment three-dimensional (3D) planning Computed Tomography (CT) scans, enabling the extraction of the 3D tumor position and segmentation. Prior to therapy, a bespoke patient-specific tumor tracking model is formulated, leveraging a hybrid data augmentation, style correction, and registration network to create a mapping from single-angle 2D X-ray images to the corresponding 3D tumors. During the treatment phase, real-time X-ray images are fed into the trained model, producing the respective 3D tumor positioning. Rigorous validation conducted on actual patient lung data and lung phantoms attests to the high localization precision of our method at lowered radiation doses, thus heralding promising strides towards enhancing the precision of radiotherapy.
Collapse
Affiliation(s)
- Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guoya Dong
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin Key Laboratory of Bioelectricity and Intelligent Health, 300130, Tianjin, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem,North Carolina, 27157, USA
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, 100191, China
| | - Xiang Zhao
- Department of Radiology, Tianjin Medical University General Hospital, 300050, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
He W, Zhang C, Dai J, Liu L, Wang T, Liu X, Jiang Y, Li N, Xiong J, Wang L, Xie Y, Liang X. A statistical deformation model-based data augmentation method for volumetric medical image segmentation. Med Image Anal 2024; 91:102984. [PMID: 37837690 DOI: 10.1016/j.media.2023.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/15/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
Collapse
Affiliation(s)
- Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Xiong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Zhang C, He W, Liu L, Dai J, Salim Ahmad I, Xie Y, Liang X. Volumetric feature points integration with bio-structure-informed guidance for deformable multi-modal CT image registration. Phys Med Biol 2023; 68:245007. [PMID: 37844603 DOI: 10.1088/1361-6560/ad03d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Objective.Medical image registration represents a fundamental challenge in medical image processing. Specifically, CT-CBCT registration has significant implications in the context of image-guided radiation therapy (IGRT). However, traditional iterative methods often require considerable computational time. Deep learning based methods, especially when dealing with low contrast organs, are frequently entangled in local optimal solutions.Approach.To address these limitations, we introduce a registration method based on volumetric feature points integration with bio-structure-informed guidance. Surface point cloud is generated from segmentation labels during the training stage, with both the surface-registered point pairs and voxel feature point pairs co-guiding the training process, thereby achieving higher registration accuracy.Main results.Our findings have been validated on paired CT-CBCT datasets. In comparison with other deep learning registration methods, our approach has improved the precision by 6%, reaching a state-of-the-art status.Significance.The integration of voxel feature points and bio-structure feature points to guide the training of the medical image registration network has achieved promising results. This provides a meaningful direction for further research in medical image registration and IGRT.
Collapse
Affiliation(s)
- Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Isah Salim Ahmad
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong, People's Republic of China
| |
Collapse
|
16
|
Sun L, Zhang Y, Liu T, Ge H, Tian J, Qi X, Sun J, Zhao Y. A collaborative multi-task learning method for BI-RADS category 4 breast lesion segmentation and classification of MRI images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107705. [PMID: 37454498 DOI: 10.1016/j.cmpb.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The diagnosis of BI-RADS category 4 breast lesion is difficult because its probability of malignancy ranges from 2% to 95%. For BI-RADS category 4 breast lesions, MRI is one of the prominent noninvasive imaging techniques. In this paper, we research computer algorithms to segment lesions and classify the benign or malignant lesions in MRI images. However, this task is challenging because the BI-RADS category 4 lesions are characterized by irregular shape, imbalanced class, and low contrast. METHODS We fully utilize the intrinsic correlation between segmentation and classification tasks, where accurate segmentation will yield accurate classification results, and classification results will promote better segmentation. Therefore, we propose a collaborative multi-task algorithm (CMTL-SC). Specifically, a preliminary segmentation subnet is designed to identify the boundaries, locations and segmentation masks of lesions; a classification subnet, which combines the information provided by the preliminary segmentation, is designed to achieve benign or malignant classification; a repartition segmentation subnet which aggregates the benign or malignant results, is designed to refine the lesion segment. The three subnets work cooperatively so that the CMTL-SC can identify the lesions better which solves the three challenges. RESULTS AND CONCLUSION We collect MRI data from 248 patients in the Second Hospital of Dalian Medical University. The results show that the lesion boundaries delineated by the CMTL-SC are close to the boundaries delineated by the physicians. Moreover, the CMTL-SC yields better results than the single-task and multi-task state-of-the-art algorithms. Therefore, CMTL-SC can help doctors make precise diagnoses and refine treatments for patients.
Collapse
Affiliation(s)
- Liang Sun
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Yunling Zhang
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Tang Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongwei Ge
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Qi
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Sun
- Health Management Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiping Zhao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Wang L, Zhou H, Xu N, Liu Y, Jiang X, Li S, Feng C, Xu H, Deng K, Song J. A general approach for automatic segmentation of pneumonia, pulmonary nodule, and tuberculosis in CT images. iScience 2023; 26:107005. [PMID: 37534183 PMCID: PMC10391673 DOI: 10.1016/j.isci.2023.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
Proposing a general segmentation approach for lung lesions, including pulmonary nodules, pneumonia, and tuberculosis, in CT images will improve efficiency in radiology. However, the performance of generative adversarial networks is hampered by the limited availability of annotated samples and the catastrophic forgetting of the discriminator, whereas the universality of traditional morphology-based methods is insufficient for segmenting diverse lung lesions. A cascaded dual-attention network with a context-aware pyramid feature extraction module was designed to address these challenges. A self-supervised rotation loss was designed to mitigate discriminator forgetting. The proposed model achieved Dice coefficients of 70.92, 73.55, and 68.52% on multi-center pneumonia, lung nodule, and tuberculosis test datasets, respectively. No significant decrease in accuracy was observed (p > 0.10) when a small training sample size was used. The cyclic training of the discriminator was reduced with self-supervised rotation loss (p < 0.01). The proposed approach is promising for segmenting multiple lung lesion types in CT images.
Collapse
Affiliation(s)
- Lu Wang
- Department of Library, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - He Zhou
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Xu
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuchan Liu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC Hefei, Anhui 230036, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning 110122, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| | - Chaolu Feng
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Ministry of Education, Shenyang, Liaoning 110169, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC Hefei, Anhui 230036, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
18
|
Liang X, Dai J, Zhou X, Liu L, Zhang C, Jiang Y, Li N, Niu T, Xie Y, Dai Z, Wang X. An Unsupervised Learning-Based Regional Deformable Model for Automated Multi-Organ Contour Propagation. J Digit Imaging 2023; 36:923-931. [PMID: 36717520 PMCID: PMC10287868 DOI: 10.1007/s10278-023-00779-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
The aim of this study is to evaluate a regional deformable model based on a deep unsupervised learning model for automatic contour propagation in breast cone-beam computed tomography-guided adaptive radiation therapy. A deep unsupervised learning model was introduced to map breast's tumor bed, clinical target volume, heart, left lung, right lung, and spinal cord from planning computed tomography to cone-beam CT. To improve the traditional image registration method's performance, we used a regional deformable framework based on the narrow-band mapping, which can mitigate the effect of the image artifacts on the cone-beam CT. We retrospectively selected 373 anonymized cone-beam CT volumes from 111 patients with breast cancer. The cone-beam CTs are divided into three sets. 311 / 20 / 42 cone-beam CT images were used for training, validating, and testing. The manual contour was used as reference for the testing set. We compared the results between the reference and the model prediction for evaluating the performance. The mean Dice between manual reference segmentations and the model predicted segmentations for breast tumor bed, clinical target volume, heart, left lung, right lung, and spinal cord were 0.78 ± 0.09, 0.90 ± 0.03, 0.88 ± 0.04, 0.94 ± 0.03, 0.95 ± 0.02, and 0.77 ± 0.07, respectively. The results demonstrated a good agreement between the reference and the proposed contours. The proposed deep learning-based regional deformable model technique can automatically propagate contours for breast cancer adaptive radiotherapy. Deep learning in contour propagation was promising, but further investigation was warranted.
Collapse
Affiliation(s)
- Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Xuanru Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305 USA
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808 China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518118 China
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049 China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Zhenhui Dai
- Department of Radiation Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Xuetao Wang
- Department of Radiation Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| |
Collapse
|
19
|
Hong P, Du Y, Chen D, Peng C, Yang B, Xu L. A U-Shaped Network Based on Multi-level Feature and Dual-Attention Coordination Mechanism for Coronary Artery Segmentation of CCTA Images. Cardiovasc Eng Technol 2023; 14:380-392. [PMID: 36849622 DOI: 10.1007/s13239-023-00659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Computed tomography coronary angiography (CCTA) images provide optimal visualization of coronary arteries to aid in diagnosing coronary heart disease (CHD). With the deep convolutional neural network, this work aims to develop an intelligent and lightweight coronary artery segmentation algorithm that can be deployed in hospital systems to assist clinicians in quantitatively analyzing CHD. METHODS With the multi-level feature fusion, we proposed Dual-Attention Coordination U-Net (DAC-UNet) that achieves automated coronary artery segmentation in 2D CCTA images. The coronary artery occupies a small region, and the foreground and background are extremely unbalanced. For this reason, the more original information can be retained by fusing related features between adjacent layers, which is conducive to recovering the small coronary artery area. The dual-attention coordination mechanism can select valid information and filter redundant information. Moreover, the complementation and coordination of double attention factors can enhance the integrity of features of coronary arteries, reduce the interference of non-coronary arteries, and prevent over-learning. With gradual learning, the balanced character of double attention factors promotes the generalization ability of the model to enhance coronary artery localization and contour detail segmentation. RESULTS Compared with existing related segmentation methods, our method achieves a certain degree of improvement in 2D CCTA images for the segmentation accuracy of coronary arteries with a mean Dice index of 0.7920. Furthermore, the method can obtain relatively accurate results even in a small sample dataset and is easy to implement and deploy, which is promising. The code is available at: https://github.com/windfly666/Segmentation . CONCLUSION Our method can capture the coronary artery structure end-to-end, which can be used as a fundamental means for automatic detection of coronary artery stenosis, blood flow reserve fraction analysis, and assisting clinicians in diagnosing CHD.
Collapse
Affiliation(s)
- Peng Hong
- Software College, Northeastern University, Shenyang, 110169, China
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd, Shenyang, 110169, China
| | - Yong Du
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
- School of Electrical and Information Engineering, Northeast Agricultural University, Harbin, 150001, China
| | - Dongming Chen
- Software College, Northeastern University, Shenyang, 110169, China.
| | - Chengbao Peng
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd, Shenyang, 110169, China.
| | - Benqiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, 110169, China
- College of Medicine and Biological and Information Engineering, Northeastern University, Shenyang, 110167, China
| | - Lisheng Xu
- College of Medicine and Biological and Information Engineering, Northeastern University, Shenyang, 110167, China
- Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang, 110169, China
| |
Collapse
|
20
|
Chan Y, Liu X, Wang T, Dai J, Xie Y, Liang X. An attention-based deep convolutional neural network for ultra-sparse-view CT reconstruction. Comput Biol Med 2023; 161:106888. [DOI: 10.1016/j.compbiomed.2023.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
|
21
|
A novel multi-attention, multi-scale 3D deep network for coronary artery segmentation. Med Image Anal 2023; 85:102745. [PMID: 36630869 DOI: 10.1016/j.media.2023.102745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Automatic segmentation of coronary arteries provides vital assistance to enable accurate and efficient diagnosis and evaluation of coronary artery disease (CAD). However, the task of coronary artery segmentation (CAS) remains highly challenging due to the large-scale variations exhibited by coronary arteries, their complicated anatomical structures and morphologies, as well as the low contrast between vessels and their background. To comprehensively tackle these challenges, we propose a novel multi-attention, multi-scale 3D deep network for CAS, which we call CAS-Net. Specifically, we first propose an attention-guided feature fusion (AGFF) module to efficiently fuse adjacent hierarchical features in the encoding and decoding stages to capture more effectively latent semantic information. Then, we propose a scale-aware feature enhancement (SAFE) module, aiming to dynamically adjust the receptive fields to extract more expressive features effectively, thereby enhancing the feature representation capability of the network. Furthermore, we employ the multi-scale feature aggregation (MSFA) module to learn a more distinctive semantic representation for refining the vessel maps. In addition, considering that the limited training data annotated with a quality golden standard are also a significant factor restricting the development of CAS, we construct a new dataset containing 119 cases consisting of coronary computed tomographic angiography (CCTA) volumes and annotated coronary arteries. Extensive experiments on our self-collected dataset and three publicly available datasets demonstrate that the proposed method has good segmentation performance and generalization ability, outperforming multiple state-of-the-art algorithms on various metrics. Compared with U-Net3D, the proposed method significantly improves the Dice similarity coefficient (DSC) by at least 4% on each dataset, due to the synergistic effect among the three core modules, AGFF, SAFE, and MSFA. Our implementation is released at https://github.com/Cassie-CV/CAS-Net.
Collapse
|
22
|
Dong G, Dai J, Li N, Zhang C, He W, Liu L, Chan Y, Li Y, Xie Y, Liang X. 2D/3D Non-Rigid Image Registration via Two Orthogonal X-ray Projection Images for Lung Tumor Tracking. Bioengineering (Basel) 2023; 10:bioengineering10020144. [PMID: 36829638 PMCID: PMC9951849 DOI: 10.3390/bioengineering10020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Two-dimensional (2D)/three-dimensional (3D) registration is critical in clinical applications. However, existing methods suffer from long alignment times and high doses. In this paper, a non-rigid 2D/3D registration method based on deep learning with orthogonal angle projections is proposed. The application can quickly achieve alignment using only two orthogonal angle projections. We tested the method with lungs (with and without tumors) and phantom data. The results show that the Dice and normalized cross-correlations are greater than 0.97 and 0.92, respectively, and the registration time is less than 1.2 seconds. In addition, the proposed model showed the ability to track lung tumors, highlighting the clinical potential of the proposed method.
Collapse
Affiliation(s)
- Guoya Dong
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin 300130, China
| | - Jingjing Dai
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin 300130, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinping Chan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunhui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
23
|
Li N, Zhou X, Chen S, Dai J, Wang T, Zhang C, He W, Xie Y, Liang X. Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT. Front Oncol 2023; 13:1127866. [PMID: 36910636 PMCID: PMC9993856 DOI: 10.3389/fonc.2023.1127866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Objective To develop a contrast learning-based generative (CLG) model for the generation of high-quality synthetic computed tomography (sCT) from low-quality cone-beam CT (CBCT). The CLG model improves the performance of deformable image registration (DIR). Methods This study included 100 post-breast-conserving patients with the pCT images, CBCT images, and the target contours, which the physicians delineated. The CT images were generated from CBCT images via the proposed CLG model. We used the Sct images as the fixed images instead of the CBCT images to achieve the multi-modality image registration accurately. The deformation vector field is applied to propagate the target contour from the pCT to CBCT to realize the automatic target segmentation on CBCT images. We calculate the Dice similarity coefficient (DSC), 95 % Hausdorff distance (HD95), and average surface distance (ASD) between the prediction and reference segmentation to evaluate the proposed method. Results The DSC, HD95, and ASD of the target contours with the proposed method were 0.87 ± 0.04, 4.55 ± 2.18, and 1.41 ± 0.56, respectively. Compared with the traditional method without the synthetic CT assisted (0.86 ± 0.05, 5.17 ± 2.60, and 1.55 ± 0.72), the proposed method was outperformed, especially in the soft tissue target, such as the tumor bed region. Conclusion The CLG model proposed in this study can create the high-quality sCT from low-quality CBCT and improve the performance of DIR between the CBCT and the pCT. The target segmentation accuracy is better than using the traditional DIR.
Collapse
Affiliation(s)
- Na Li
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China.,Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan, Guangdong, China.,Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xuanru Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Shupeng Chen
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, United States
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Garcea F, Serra A, Lamberti F, Morra L. Data augmentation for medical imaging: A systematic literature review. Comput Biol Med 2023; 152:106391. [PMID: 36549032 DOI: 10.1016/j.compbiomed.2022.106391] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Recent advances in Deep Learning have largely benefited from larger and more diverse training sets. However, collecting large datasets for medical imaging is still a challenge due to privacy concerns and labeling costs. Data augmentation makes it possible to greatly expand the amount and variety of data available for training without actually collecting new samples. Data augmentation techniques range from simple yet surprisingly effective transformations such as cropping, padding, and flipping, to complex generative models. Depending on the nature of the input and the visual task, different data augmentation strategies are likely to perform differently. For this reason, it is conceivable that medical imaging requires specific augmentation strategies that generate plausible data samples and enable effective regularization of deep neural networks. Data augmentation can also be used to augment specific classes that are underrepresented in the training set, e.g., to generate artificial lesions. The goal of this systematic literature review is to investigate which data augmentation strategies are used in the medical domain and how they affect the performance of clinical tasks such as classification, segmentation, and lesion detection. To this end, a comprehensive analysis of more than 300 articles published in recent years (2018-2022) was conducted. The results highlight the effectiveness of data augmentation across organs, modalities, tasks, and dataset sizes, and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Fabio Garcea
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Alessio Serra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Fabrizio Lamberti
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Lia Morra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy.
| |
Collapse
|
25
|
Ni F, Wang J, Tang J, Yu W, Xu R. Side channel analysis based on feature fusion network. PLoS One 2022; 17:e0274616. [PMID: 36251640 PMCID: PMC9576056 DOI: 10.1371/journal.pone.0274616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Various physical information can be leaked while the encryption algorithm is running in the device. Side-channel analysis exploits these leakages to recover keys. Due to the sensitivity of deep learning to the data features, the efficiency and accuracy of side channel analysis are effectively improved with the application of deep learning algorithms. However, a considerable part of existing reserches are based on traditional neural networks. The effectiveness of key recovery is improved by increasing the size of the network. However, the computational complexity of the algorithm increases accordingly. Problems such as overfitting, low training efficiency, and low feature extraction ability also occur. In this paper, we construct an improved lightweight convolutional neural network based on the feature fusion network. The new network and the traditional neural networks are respectively applied to the side-channel analysis for comparative experiments. The results show that the new network has faster convergence, better robustness and higher accuracy. No overfitting has occurred. A heatmap visualization method was introduced for analysis. The new network has higher heat value and more concentration in the key interval. Side-channel analysis based on feature fusion network has better performance, compared with the ones based on traditional neural networks.
Collapse
Affiliation(s)
- Feng Ni
- School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan, Hunan, China
| | - Junnian Wang
- School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan, Hunan, China
- * E-mail:
| | - Jialin Tang
- School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan, Hunan, China
| | - Wenjun Yu
- School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan, Hunan, China
| | - Ruihan Xu
- School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan, Hunan, China
| |
Collapse
|
26
|
Liang X, Bassenne M, Hristov DH, Islam T, Zhao W, Jia M, Zhang Z, Gensheimer M, Beadle B, Le Q, Xing L. Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy. Comput Biol Med 2022; 141:105139. [PMID: 34942395 PMCID: PMC8810749 DOI: 10.1016/j.compbiomed.2021.105139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE To develop a deep unsupervised learning method with control volume (CV) mapping from patient positioning daily CT (dCT) to planning computed tomography (pCT) for precise patient positioning. METHODS We propose an unsupervised learning framework, which maps CVs from dCT to pCT to automatically generate the couch shifts, including translation and rotation dimensions. The network inputs are dCT, pCT and CV positions in the pCT. The output is the transformation parameter of the dCT used to setup the head and neck cancer (HNC) patients. The network is trained to maximize image similarity between the CV in the pCT and the CV in the dCT. A total of 554 CT scans from 158 HNC patients were used for the evaluation of the proposed model. At different points in time, each patient had many CT scans. Couch shifts are calculated for the testing by averaging the translation and rotation from the CVs. The ground-truth of the shifts come from bone landmarks determined by an experienced radiation oncologist. RESULTS The system positioning errors of translation and rotation are less than 0.47 mm and 0.17°, respectively. The random positioning errors of translation and rotation are less than 1.13 mm and 0.29°, respectively. The proposed method enhanced the proportion of cases registered within a preset tolerance (2.0 mm/1.0°) from 66.67% to 90.91% as compared to standard registrations. CONCLUSIONS We proposed a deep unsupervised learning architecture for patient positioning with inclusion of CVs mapping, which weights the CVs regions differently to mitigate any potential adverse influence of image artifacts on the registration. Our experimental results show that the proposed method achieved efficient and effective HNC patient positioning.
Collapse
Affiliation(s)
- Xiaokun Liang
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Maxime Bassenne
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Dimitre H. Hristov
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305 USA
| | - Tauhidul Islam
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305 USA
| | - Wei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Mengyu Jia
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Quynh Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Zhang Z, Yu S, Qin W, Liang X, Xie Y, Cao G. Self-supervised CT super-resolution with hybrid model. Comput Biol Med 2021; 138:104775. [PMID: 34666243 DOI: 10.1016/j.compbiomed.2021.104775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Software-based methods can improve CT spatial resolution without changing the hardware of the scanner or increasing the radiation dose to the object. In this work, we aim to develop a deep learning (DL) based CT super-resolution (SR) method that can reconstruct low-resolution (LR) sinograms into high-resolution (HR) CT images. We mathematically analyzed imaging processes in the CT SR imaging problem and synergistically integrated the SR model in the sinogram domain and the deblur model in the image domain into a hybrid model (SADIR). SADIR incorporates the CT domain knowledge and is unrolled into a DL network (SADIR-Net). The SADIR-Net is a self-supervised network, which can be trained and tested with a single sinogram. SADIR-Net was evaluated through SR CT imaging of a Catphan700 physical phantom and a real porcine phantom, and its performance was compared to the other state-of-the-art (SotA) DL-based CT SR methods. On both phantoms, SADIR-Net obtains the highest information fidelity criterion (IFC), structure similarity index (SSIM), and lowest root-mean-square-error (RMSE). As to the modulation transfer function (MTF), SADIR-Net also obtains the best result and improves the MTF50% by 69.2% and MTF10% by 69.5% compared with FBP. Alternatively, the spatial resolutions at MTF50% and MTF10% from SADIR-Net can reach 91.3% and 89.3% of the counterparts reconstructed from the HR sinogram with FBP. The results show that SADIR-Net can provide performance comparable to the other SotA methods for CT SR reconstruction, especially in the case of extremely limited training data or even no data at all. Thus, the SADIR method could find use in improving CT resolution without changing the hardware of the scanner or increasing the radiation dose to the object.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, Stanford, 94305-5847, CA, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shaode Yu
- College of Information and Communication Engineering, Communication University of China, Beijing 100024, China
| | - Wenjian Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaokun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Guohua Cao
- Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
| |
Collapse
|