1
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
2
|
Dutta Majumder P, Mochizuki M, González-López JJ, Gonzales J, Sharma M, Sharma K, Biswas J. Laboratory Investigations in Infectious Uveitis. Ocul Immunol Inflamm 2023; 31:1405-1415. [PMID: 36698066 DOI: 10.1080/09273948.2022.2164728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023]
Abstract
Laboratory investigations can play a significant role in the diagnosis and decision-making of infectious uveitis. Though direct demonstration of the infective organism remains the gold standard of diagnosis, it is not always possible with ocular tissues. Recent advancements in molecular techniques have made it possible to overcome these limitations and to identify the genomic DNA of pathogens associated with infectious uveitis. Techniques such as next-generation sequencing can analyze all DNA-based lifeforms, regardless of whether they are bacteria, fungi, viruses, or parasites and have been used in the laboratory diagnosis of intraocular inflammation. On the other hand, serological tests, though they dominate the diagnostic landscape of various infectious etiologies in uveitis in routine clinical practice, have varied specificities and sensitivities in different infectious uveitis. In this review, we focus on various methods of laboratory diagnosis of infectious uveitis and discuss the recent advances in molecular diagnosis and their role in various infectious clinical entities.
Collapse
Affiliation(s)
| | - Manabu Mochizuki
- Miyata Eye Hospital, Miyakonojo, Japan
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Julio J González-López
- Ophthalmology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Surgery Department, Universidad de Alcalá, Madrid, Spain
| | - John Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Megha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, India
| | - Kusum Sharma
- Department of Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh (PGIMER), Chandigarh, India
| | - Jyotirmay Biswas
- Director of Uveitis & Ocular Pathology, Sankara Nethralaya, Chennai, India
| |
Collapse
|
3
|
Labrandero Hoyos C, Peñuelas Leal R, Casanova Esquembre A, Lorca Spröhnle J, Echevarría AG, Magdaleno Tapial J, Martinez-Domenech Á, Mochón MDO, Hernández Bel P. Diagnostic value of Treponema pallidum PCR test in real practice. Australas J Dermatol 2023; 64:e51-e56. [PMID: 36598263 DOI: 10.1111/ajd.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Syphilis is a sexually transmitted infection (STI) caused by the pathogen Treponema pallidum. Its incidence is increasing in our country, especially among men who have sex with men (MSM). Serological tests are still the most widely used technique for diagnosis. The need for an early diagnosis has prompted the introduction of fast techniques, such as Treponema pallidum detection by polymerase chain reaction (PCR) on mucocutaneous samples. The objective of this work is to analyse the sensitivity of this technique in a series of patients diagnosed with syphilis at our centre. METHODS Retrospective review of all cases diagnosed with syphilis at our centre between May 2017 and May 2021. RESULTS A total of 203 cases of syphilis were diagnosed with serologic tests: 33% were primary syphilis and 53.1% secondary syphilis. PCR for Treponema pallidum was performed in 117 (57,6%) cases. The sensitivity was highest (95,2%) when performed on samples from mucocutaneous ulcers in primary syphilis. This value decreased to 69,4% in secondary syphilis, although there were variations between the types of samples. CONCLUSIONS The PCR test has a high diagnostic value when performed on ulcer exudates in patients with primary syphilis. Its most relevant advantages in clinical practice are the possibility of an early diagnosis before serological tests during the window period, the ability to confirm reinfections in patients with persistent positivity of reaginic antibodies and a history of treated syphilis. Nevertheless, given that a negative PCR test may not rule out infection by Treponema pallidum, serologic tests are still necessary for everyday practice.
Collapse
Affiliation(s)
| | - Rodrigo Peñuelas Leal
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Javier Lorca Spröhnle
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | | | - Pablo Hernández Bel
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Lu J, Hu J, Yu S, Li L. Next Generation Sequencing for Diagnosis of Leptospirosis Combined With Multiple Organ Failure: A Case Report and Literature Review. Front Med (Lausanne) 2022; 8:756592. [PMID: 35145972 PMCID: PMC8821090 DOI: 10.3389/fmed.2021.756592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Leptospirosis poses a major threat to human life. The disease spectrum ranges from a nearly undetectable presentation to severe multi-organ dysfunction and death. Leptospirosis is difficult to diagnose by traditional antibody and culture tests. We here present a case of multiple organ failure associated with leptospirosis. Material and Methods A 64-year-old woman presented with fatigue and arthralgia, which developed rapidly into multiple organ injuries, and she eventually died of cerebral hemorrhage. Serum antibody test and cultures of blood, sputum, urine, and feces samples were all negative. The patient was diagnosed with leptospirosis by the next-generation sequencing (NGS). Conclusion We conclude that leptospirosis is a neglected zoonosis caused by pathogenic Leptospira species. New techniques such as NGS are highlighted for early diagnosis. Surveillance for pathogens during diagnosis can provide guidance for clinical treatment and improves prognosis.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Intensive Care Unit, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shanshan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li
| |
Collapse
|
5
|
Stroffolini G, Segala FV, Lupia T, Faraoni S, Rossi L, Tomassone L, Zanet S, De Rosa FG, Di Perri G, Calcagno A. Serology for Borrelia spp. in Northwest Italy: A Climate-Matched 10-Year Trend. Life (Basel) 2021; 11:life11121310. [PMID: 34947841 PMCID: PMC8706290 DOI: 10.3390/life11121310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/04/2022] Open
Abstract
Ticks are hematophagous parasites that can transmit a variety of human pathogens, and their life cycle is dependent on several climatic factors for development and survival. We conducted a study in Piedmont and Aosta Valley, Italy, between 2009 and 2018. The study matched human sample serologies for Borrelia spp. with publicly available climatic and meteorological data. A total of 12,928 serological immunofluorescence assays (IFA) and Western blot (WB) tests were analysed. The median number of IFA and WB tests per year was 1236 (range 700–1997), with the highest demand in autumn 2018 (N = 289). In the study period, positive WB showed an increasing trend, peaking in 2018 for both IgM (N = 97) and IgG (N = 61). These results were consistent with a regional climatic variation trending towards an increase in both temperature and humidity. Our results suggest that coupling data from epidemiology and the environment, and the use of a “one health” approach, may provide a powerful tool in understanding disease transmission and strengthen collaboration between specialists in the era of climate instability.
Collapse
Affiliation(s)
- Giacomo Stroffolini
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy; (G.D.P.); (A.C.)
- Correspondence: (G.S.); (F.V.S.); Tel.: +39-0114393793 (G.S.)
| | - Francesco Vladimiro Segala
- Clinic of Infectious Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence: (G.S.); (F.V.S.); Tel.: +39-0114393793 (G.S.)
| | - Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia Hospital, 14100 Asti, Italy; (T.L.); (F.G.D.R.)
| | - Silvia Faraoni
- Laboratory of Microbiology and Virology, Ospedale Amedeo di Savoia, ASL “Città di Torino”, 10149 Turin, Italy;
| | - Luca Rossi
- Department of Veterinary Sciences, University of Turin, 10149 Turin, Italy; (L.R.); (L.T.); (S.Z.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, 10149 Turin, Italy; (L.R.); (L.T.); (S.Z.)
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, 10149 Turin, Italy; (L.R.); (L.T.); (S.Z.)
| | | | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy; (G.D.P.); (A.C.)
| | - Andrea Calcagno
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy; (G.D.P.); (A.C.)
| |
Collapse
|
6
|
Simultaneous Detection and Differentiation of Clinically Relevant Relapsing Fever Borrelia with Semimultiplex Real-Time PCR. J Clin Microbiol 2021; 59:e0298120. [PMID: 33910966 DOI: 10.1128/jcm.02981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial vector-borne diseases, including Borrelia species, present a significant diagnostic, clinical, and public health challenge due to their overlapping symptoms and the breadth of causative agents and arthropod vectors. The relapsing fever (RF) borreliae encompass both established and emerging pathogens and are transmitted to humans by soft ticks, hard ticks, or lice. We developed a real-time semimultiplex PCR assay that detects multiple RF borreliae causing human illness and classifies them into one of three groups. The groups are based on genetic similarity and include agents of soft-tick relapsing fever (Borrelia hermsii and others), the emerging hard-tick-transmitted pathogen B. miyamotoi, and the agent of louse-borne relapsing fever (B. recurrentis). The real-time PCR assay uses a single primer pair designed to amplify all known pathogenic RF borreliae and multiple TaqMan probes to allow the detection of and differentiation among the three groups. The assay detects all RF borreliae tested, with an analytical limit of detection below 15 genome equivalents per reaction. Thirty isolates of RF borreliae encompassing six species were accurately identified. Thirty-nine of 41 residual specimens (EDTA whole blood, serum, or plasma) from patients with RF were detected and correctly classified. None of 42 clinical samples from patients with other infections and 46 culture specimens from non-RF bacteria were detected. The development of a single-assay real-time PCR approach will help to improve the diagnosis of RF by simplifying the selection of tests to aid in the clinical management of acutely ill RF patients.
Collapse
|
7
|
Springer A, Glass A, Probst J, Strube C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol Res 2021; 120:4075-4090. [PMID: 33459849 PMCID: PMC8599405 DOI: 10.1007/s00436-020-07033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Around the world, human health and animal health are closely linked in terms of the One Health concept by ticks acting as vectors for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs. veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for collaboration in a One Health framework.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Antje Glass
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
8
|
Magni R, Almofee R, Yusuf S, Mueller C, Vuong N, Almosuli M, Hoang MT, Meade K, Sethi I, Mohammed N, Araujo R, McDonald TK, Marcelli P, Espina V, Kim B, Garritsen A, Green C, Russo P, Zhou W, Vaisman I, Petricoin EF, Hoadley D, Molestina RE, McIntyre H, Liotta LA, Luchini A. Evaluation of pathogen specific urinary peptides in tick-borne illnesses. Sci Rep 2020; 10:19340. [PMID: 33168903 PMCID: PMC7653918 DOI: 10.1038/s41598-020-75051-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry enhanced by nanotechnology can achieve previously unattainable sensitivity for characterizing urinary pathogen-derived peptides. We utilized mass spectrometry enhanced by affinity hydrogel particles (analytical sensitivity = 2.5 pg/mL) to study tick pathogen-specific proteins shed in the urine of patients with (1) erythema migrans rash and acute symptoms, (2) post treatment Lyme disease syndrome (PTLDS), and (3) clinical suspicion of tick-borne illnesses (TBI). Targeted pathogens were Borrelia, Babesia, Anaplasma, Rickettsia, Ehrlichia, Bartonella, Francisella, Powassan virus, tick-borne encephalitis virus, and Colorado tick fever virus. Specificity was defined by 100% amino acid sequence identity with tick-borne pathogen proteins, evolutionary taxonomic verification for related pathogens, and no identity with human or other organisms. Using a cut off of two pathogen peptides, 9/10 acute Lyme Borreliosis patients resulted positive, while we identified zero false positive in 250 controls. Two or more pathogen peptides were identified in 40% of samples from PTLDS and TBI patients (categories 2 and 3 above, n = 59/148). Collectively, 279 distinct unique tick-borne pathogen derived peptides were identified. The number of pathogen specific peptides was directly correlated with presence or absence of symptoms reported by patients (ordinal regression pseudo-R2 = 0.392, p = 0.010). Enhanced mass spectrometry is a new tool for studying tick-borne pathogen infections.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Raghad Almofee
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Sameen Yusuf
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Ngoc Vuong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mahmood Almosuli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Minh Thu Hoang
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Katherine Meade
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Ish Sethi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Nuha Mohammed
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Robyn Araujo
- Queensland University of Technology, Brisbane, Australia
| | - Teresa Kaza McDonald
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Paul Marcelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Iosif Vaisman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Deborah Hoadley
- New England Institute for Lyme Disease and Tick-Borne Illness, Longmeadow, USA
| | | | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
9
|
Diagnostic tools for bacterial infections in travellers: Current and future options. Travel Med Infect Dis 2020; 37:101856. [PMID: 32841728 DOI: 10.1016/j.tmaid.2020.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
International travel has increased dramatically over the past 50 years, and travel destinations have diversified. Although physicians are more familiar with the panel of aetiological agents responsible for illnesses of returning travellers, thanks to regular epidemiological studies, the spectrum of pathogens potentially encountered in various travel destinations is nevertheless increasing. In addition, the wide array of approaches currently available and addressed in this paper could render the procedures for microbiological analyses increasingly complex. As the time to result is crucial to adequately manage patients, modern approaches have been developed to shorten diagnosis delays. The syndromic approach, which consists of simultaneously testing a wide panel of microorganisms, substantially increases the diagnostic yield with significant time savings, particularly when coupled with point-of-care laboratories. The tools commonly used for this purpose are immunochromatographic tests, mainly targeting bacterial antigens, and multiplex real-time PCR. The emergence of next-generation sequencing technologies, which enable random amplification of genetic material of any microbe present in a clinical specimen, provides further exciting perspectives in the diagnosis of infectious diseases.
Collapse
|
10
|
Talagrand-Reboul E, Raffetin A, Zachary P, Jaulhac B, Eldin C. Immunoserological Diagnosis of Human Borrelioses: Current Knowledge and Perspectives. Front Cell Infect Microbiol 2020; 10:241. [PMID: 32509603 PMCID: PMC7248299 DOI: 10.3389/fcimb.2020.00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Spirochetes of the genus Borrelia are divided into relapsing fever borreliae and Lyme disease borreliae. Immunoserological assays have been poorly developed for relapsing fever borreliae, where direct detection methods are more adapted to the pathophysiology of these infections presenting with massive bacteraemia. However, emergence of the novel agent of relapsing fever B. miyamotoi has renewed interest in serology in this context. In Lyme disease, because direct detection methods show low sensitivity, serology plays a central role in the diagnostic strategy. This diagnostic strategy is based on a two-tier methodology involving a first test (ELISA) with high sensitivity and acceptable specificity and a second, more specific test (western blot) for diagnostic confirmation. The most frequent limitations and pitfalls of serology are cross reactions, false IgM positivity, a seronegative window period at the early time of the infection, and serologic scars with a suspicion of reinfection. International guidelines have thus been proposed to avoid these difficulties with interpretation. Finally, unconventional diagnostic tests have been developed recently in the context of a highly publicized disease, with widely varying results, some of which have no available evidence-based data. New two-tier testing strategies using two ELISA tests (C6 and WCS for example) to replace immunoblot are currently proposed by some authors and guidelines, and promising new tests such as CXCL-13 in CSF are promising tools for the improvement of the diagnosis of Lyme borreliosis.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- UR 7290 Virulence Bactérienne Précoce, Université de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Fédération de Médecine Translationnelle, Groupe Borréliose de Strasbourg, Strasbourg, France.,National Reference Center for Borrelia, CHRU Strasbourg, Strasbourg, France
| | - Alice Raffetin
- Department of Infectious Diseases, Centre Hospitalier Lucie-et-Raymond-Aubrac, Villeneuve-Saint-Georges, France
| | - Pierre Zachary
- UR 7290 Virulence Bactérienne Précoce, Université de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Fédération de Médecine Translationnelle, Groupe Borréliose de Strasbourg, Strasbourg, France.,National Reference Center for Borrelia, CHRU Strasbourg, Strasbourg, France
| | - Benoît Jaulhac
- UR 7290 Virulence Bactérienne Précoce, Université de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Fédération de Médecine Translationnelle, Groupe Borréliose de Strasbourg, Strasbourg, France.,National Reference Center for Borrelia, CHRU Strasbourg, Strasbourg, France
| | - Carole Eldin
- Aix Marseille Univ, IRD, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8:antibiotics8040269. [PMID: 31888310 PMCID: PMC6963229 DOI: 10.3390/antibiotics8040269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronic Lyme disease has been a poorly defined term and often dismissed as a fictitious entity. In this paper, the International Lyme and Associated Diseases Society (ILADS) provides its evidence-based definition of chronic Lyme disease. Definition: ILADS defines chronic Lyme disease (CLD) as a multisystem illness with a wide range of symptoms and/or signs that are either continuously or intermittently present for a minimum of six months. The illness is the result of an active and ongoing infection by any of several pathogenic members of the Borrelia burgdorferi sensu lato complex (Bbsl). The infection has variable latency periods and signs and symptoms may wax, wane and migrate. CLD has two subcategories, CLD, untreated (CLD-U) and CLD, previously treated (CLD-PT). The latter requires that CLD manifestations persist or recur following treatment and are present continuously or in a relapsing/remitting pattern for a duration of six months or more. Methods: Systematic review of over 250 peer reviewed papers in the international literature to characterize the clinical spectrum of CLD-U and CLD-PT. Conclusion: This evidence-based definition of chronic Lyme disease clarifies the term's meaning and the literature review validates that chronic and ongoing Bbsl infections can result in chronic disease. Use of this CLD definition will promote a better understanding of the infection and facilitate future research of this infection.
Collapse
|