1
|
Žoldáková M, Novotný M, Khakurel KP, Žoldák G. Hemoglobin Variants as Targets for Stabilizing Drugs. Molecules 2025; 30:385. [PMID: 39860253 PMCID: PMC11767434 DOI: 10.3390/molecules30020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide. Genetic variations in hemoglobin chains, such as those underlying sickle cell disease and thalassemias, present substantial clinical challenges. Here, we review the progress in research, including the use of allosteric modulators, pharmacological chaperones, and antioxidant treatments, which has begun to improve hemoglobin stability and oxygen affinity. According to UniProt (as of 7 August 2024), 819 variants of the α-hemoglobin subunit and 771 variants of the β-hemoglobin subunit have been documented, with over 116 classified as unstable. These data demonstrate the urgent need to develop variant-specific stabilizing options. Beyond small-molecule drugs/binders, novel protein-based strategies-such as engineered hemoglobin-binding proteins (including falcilysin, llama-derived nanobodies, and α-hemoglobin-stabilizing proteins)-offer promising new options. As our understanding of hemoglobin's structural and functional diversity grows, so does the potential for genotype-driven approaches. Continued research into hemoglobin stabilization and ligand-binding modification may yield more precise, effective treatments and pave the way toward effective strategies for hemoglobinopathies.
Collapse
Affiliation(s)
- Miroslava Žoldáková
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 19, 040 01 Košice, Slovakia
| | - Michal Novotný
- AURORA R&D s.r.o., Mojmírova 12, 040 01 Košice, Slovakia
| | - Krishna P. Khakurel
- Extreme Light Infrastructure ERIC, Za Radnici 835, 25241 Dolni Brezany, Czech Republic
| | - Gabriel Žoldák
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 19, 040 01 Košice, Slovakia
| |
Collapse
|
2
|
Nayak AK, Canepari M, Das SL, Misbah C. Nitric oxide modelling and its bioavailability influenced by red blood cells. J R Soc Interface 2024; 21:20240458. [PMID: 39691087 DOI: 10.1098/rsif.2024.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca2+ concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca2+ concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs. However, RBCs, which act as NO scavengers, can affect the bioavailability of NO in blood vessels. In this study, we developed a model that incorporates ATP and shear stress-dependent NO production, integrating various biochemical pathways. The model results are qualitatively consistent with the experimental findings. Given that ATP concentration and shear stress vary spatially within blood circulation, influenced by factors such as vessel width, flow strength and RBC concentration, these variations can significantly affect NO bioavailability. Here, we study RBC flow, ATP release from RBCs and ECs, and [Formula: see text] and NO dynamics in a two-dimensional channel using the immersed boundary lattice Boltzmann method. The main findings from the study include: (i) an increase in RBC concentration leads to a rise in ATP and cytoplasmic Ca2+ concentrations for all variation in channel widths, while NO concentration exhibits a decrease; (ii) NO bioavailability is significantly influenced by RBC distribution, particularly in strongly confined channels; and (iii) two phases of NO bioavailability are observed in different regions of the blood vessels: one with a significant concentration change at low RBC concentration and another with a minimal concentration change at high RBC concentration, across all confinements. The outcomes of this study may provide valuable insights into the mechanisms of NO-dependent vasodilation and the transport of oxygen by RBCs within microvascular networks for future studies.
Collapse
Affiliation(s)
| | - Marco Canepari
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory, and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Chaouqi Misbah
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
3
|
Terlouw EMC, Paulmier V, Andanson S, Picgirard L, Aleyrangues X, Durand D. Slaughter of cattle without stunning: Questions related to pain, stress and endorphins. Meat Sci 2024; 219:109686. [PMID: 39490250 DOI: 10.1016/j.meatsci.2024.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
EEG studies have suggested that cattle perceive pain when bled without stunning. The present study on bleeding without stunning, compared cows that had received a local anaesthetic on the site of the bleeding cut (Lurocaine; Luro cows) one hour before bleeding with a 35 cm knife, with cows that had not (saline: Placebo cows). Various physiological indicators potentially related to pain or stress were evaluated. Increases in heart rate (P < 0.02) and cortisol levels (P < 0.001) during slaughter, compared to control levels are indicative of slaughter stress in both groups. GSH/GSSG ratio, plasma PGE2, TNFα, and NO levels and blood haematocrit levels at slaughter were not influenced by slaughter or treatment. At bleeding, excluding two out of the 15 cows with non-missing data, Placebo cows presented a longer delay between the loss of the corneal reflex and respiratory arrest. Post-mortem, Longissimus muscle of Placebo cows had a faster pH decline and remained warmer. Overall, results suggest greater stress levels in this group, probably due to pain. Plasma or brain β-endorphin contents in relevant brain structures did not increase following bleeding in either group, thus not supporting the hypothesis that stress or pain-induced release of endorphins reduces pain perceived following the cut. Furthermore, according to existing knowledge, plasma β-endorphins do not reduce pain perceived. Thus, both our study and previous research do not provide evidence that slaughter without stunning does not cause pain or other forms of stress in at least part of the animals.
Collapse
Affiliation(s)
- E M Claudia Terlouw
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Valérie Paulmier
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France; Present address: Cap Emploi 63 - 19 Boulevard Berthelot, 62400 Chamalieres, France
| | - Stéphane Andanson
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France; Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Laurent Picgirard
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France
| | - Xavier Aleyrangues
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France
| | - Denis Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
4
|
Delanghe JR, Delrue C, Speeckaert R, Speeckaert MM. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: insights and implications. Crit Rev Clin Lab Sci 2024; 61:275-297. [PMID: 38013410 DOI: 10.1080/10408363.2023.2285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Haptoglobin (Hp) is a polymorphic protein that was initially described as a hemoglobin (Hb)-binding protein. The major functions of Hp are to scavenge Hb, prevent iron loss, and prevent heme-based oxidation. Hp regulates angiogenesis, nitric oxide homeostasis, immune responses, and prostaglandin synthesis. Genetic polymorphisms in the Hp gene give rise to different phenotypes, including Hp 1-1, Hp 2-1, and Hp 2-2. Extensive research has been conducted to investigate the association between Hp polymorphisms and several medical conditions including cardiovascular disease, inflammatory bowel disease, cancer, transplantation, and hemoglobinopathies. Generally, the Hp 2-2 phenotype is associated with increased disease risk and poor outcomes. Over the years, the Hp 2 allele has spread under genetic pressures. Individuals with the Hp 2-2 phenotype generally exhibit lower levels of CD163 expression in macrophages. The decreased expression of CD163 may be associated with the poor antioxidant capacity in the serum of subjects carrying the Hp 2-2 phenotype. However, the Hp 1-1 phenotype may confer protection in some cases. The Hp1 allele has strong antioxidant, anti-inflammatory, and immunomodulatory properties. It is important to note that the benefits of the Hp1 allele may vary depending on genetic and environmental factors as well as the specific disease or condition under consideration. Therefore, the Hp1 allele may not necessarily confer advantages in all situations, and its effects may be context-dependent. This review highlights the current understanding of the role of Hp polymorphisms in cardiovascular disease, inflammatory bowel disease, cancer, transplantation, hemoglobinopathies, and polyuria.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
5
|
Electrochemical nitric oxide detection using gold deposited cobalt oxide nanostructures. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Roberts TR, Garren MRS, Wilson SN, Handa H, Batchinsky AI. Development and In Vitro Whole Blood Hemocompatibility Screening of Endothelium-Mimetic Multifunctional Coatings. ACS APPLIED BIO MATERIALS 2022; 5:2212-2223. [PMID: 35404571 DOI: 10.1021/acsabm.2c00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multifunctional antithrombotic surface modifications for blood-contacting medical devices have emerged as a solution for foreign surface-mediated coagulation disturbance. Herein, we have developed and evaluated an endothelium-inspired strategy to reduce the thrombogenicity of medical plastics by imparting nitric oxide (NO) elution and heparin immobilization on the material surface. This dual-action approach (NO+Hep) was applied to polyethylene terephthalate (PET) blood incubation vials and compared to isolated modifications. Vials were characterized to evaluate NO surface flux as well as heparin density and activity. Hemocompatibility was assessed in vitro using whole blood from human donors. Compared to unmodified surfaces, blood incubated in the NO+Hep vials exhibited reduced platelet aggregation (15% decrease AUC, p = 0.040) and prolonged plasma clotting times (aPTT = 147% increase, p < 0.0001, prothrombin time = 5% increase, p = 0.0002). Prolongation of thromboelastography reaction time and elevated antifactor Xa levels in blood from NO+Hep versus PET vials suggests some heparin leaching from the vial surface, confirmed by post-blood incubation heparin density assessment. Results suggest NO+Hep surface modification is a promising approach for blood-contacting plastics; however, careful tuning of NO flux and heparin stabilization are essential and require assessment using human blood as performed here.
Collapse
Affiliation(s)
- Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Bldg 125, San Antonio, Texas 78235, United States
| | - Mark R S Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Bldg 125, San Antonio, Texas 78235, United States
| |
Collapse
|
7
|
Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2022; 84:101056. [PMID: 34852941 PMCID: PMC8821404 DOI: 10.1016/j.mam.2021.101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at β-globin Cys93 (βCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.
Collapse
Affiliation(s)
- Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Liu S, Li G, Ma D. Controllable Nitric Oxide‐Delivering Platforms for Biomedical Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT‐MRI Center The First Affiliated Hospital of Jinan University Guangzhou 510630 China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
9
|
Marshall AR, Rimmer JE, Shah N, Bye K, Kipps C, Woods DR, O'Hara J, Boos CJ, Barlow M. Marching to the Beet: The effect of dietary nitrate supplementation on high altitude exercise performance and adaptation during a military trekking expedition. Nitric Oxide 2021; 113-114:70-77. [PMID: 34051342 DOI: 10.1016/j.niox.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.
Collapse
Affiliation(s)
- Anna R Marshall
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK.
| | | | - Nishma Shah
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - Kyo Bye
- Defence Medical Services, Lichfield, WS14 9PY, UK
| | - Courtney Kipps
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - David R Woods
- Defence Medical Services, Lichfield, WS14 9PY, UK; Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, NE66 2NS, UK
| | - John O'Hara
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| | - Christopher J Boos
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, BH15 2JB, UK; Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, BH1 3LT, UK
| | - Matthew Barlow
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| |
Collapse
|
10
|
Qian S, Ma T, Zhang N, Liu X, Zhao P, Li X, Chen D, Hu L, Chang L, Xu L, Deng X, Fan Y. Spatiotemporal transfer of nitric oxide in patient-specific atherosclerotic carotid artery bifurcations with MRI and computational fluid dynamics modeling. Comput Biol Med 2020; 125:104015. [DOI: 10.1016/j.compbiomed.2020.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
|
11
|
Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, Tham CL, Shaari K, Lajis NH, Yamin BM. In silico studies, nitric oxide, and cholinesterases inhibition activities of pyrazole and pyrazoline analogs of diarylpentanoids. Arch Pharm (Weinheim) 2020; 354:e2000161. [PMID: 32886410 DOI: 10.1002/ardp.202000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
Abstract
A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
Collapse
Affiliation(s)
- Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faruk A Auwal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Lam K Wai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bohari M Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|