1
|
Rosillo I, Germosen C, Agarwal S, Rawal R, Colon I, Bucovsky M, Kil N, Shane E, Walker M. Patella fractures are associated with bone fragility - a retrospective study. J Bone Miner Res 2024; 39:1752-1761. [PMID: 39385460 PMCID: PMC11638554 DOI: 10.1093/jbmr/zjae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
Patella fractures are not typically considered osteoporotic fractures. We compared bone mineral density (BMD) and microstructure in elderly women from a multiethnic population-based study in New York City with any history of a patella fracture (n = 27) to those without historical fracture (n = 384) and those with an adult fragility forearm fracture (n = 28) using dual energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HR-pQCT). Compared to those without fracture, women with patella fracture had 6.5% lower areal BMD (aBMD) by DXA only at the total hip (p=.007), while women with forearm fracture had lower aBMD at multiple sites and lower trabecular bone score (TBS), adjusted for age, body mass index, race and ethnicity (all p<.05). By HR-pQCT, adjusted radial total and trabecular (Tb) volumetric BMD (vBMD) and Tb number were 10%-24% lower while Tb spacing was 12-23% higher (all p<.05) in the fracture groups versus women without fracture. Women with a forearm, but not a patella, fracture also had lower adjusted radial cortical (Ct) area and vBMD and 21.8% (p<.0001) lower stiffness vs. women without fracture. At the tibia, the fracture groups had 9.3%-15.7% lower total and Tb vBMD (all p<.05) compared to the non-fracture group. Women with a forearm fracture also had 10.9, and 14.7% lower tibial Ct area and thickness versus those without fracture. Compared to women without fracture, tibial stiffness was 9.9% and 12% lower in the patella and forearm fracture groups, respectively (all p<.05). By HR-pQCT, the patella vs. forearm fracture group had 36% higher radial Tb heterogeneity (p<.05). In summary, women with patella fracture had Tb deterioration by HR-pQCT associated with lower tibial mechanical competence that was similar to those with fragility forearm fracture, a more universally accepted "osteoporotic" fracture. These data suggest patella fractures are associated with skeletal fragility and warrant skeletal evaluation.
Collapse
Affiliation(s)
- Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ragyie Rawal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
2
|
Löffler MT, Wu PH, Pirmoazen AM, Joseph GB, Stewart JM, Saeed I, Liu J, Schafer AL, Schwartz AV, Link TM, Kazakia GJ. Microvascular disease not type 2 diabetes is associated with increased cortical porosity: A study of cortical bone microstructure and intracortical vessel characteristics. Bone Rep 2024; 20:101745. [PMID: 38444830 PMCID: PMC10912053 DOI: 10.1016/j.bonr.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 μm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 μm, p = 0.017) and by 8.73 μm (4.8 %, CI: 0.79, 16.7 μm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 μm (2.9 %, CI: 0.42, 30.4 μm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 μm (2.8 %, CI: -29.1, -0.11 μm, p = 0.048), respectively. Conclusions The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-hung Wu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Amir M. Pirmoazen
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Gabby B. Joseph
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jay M. Stewart
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Isra Saeed
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Anne L. Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
3
|
Löffler MT, Wu PH, Kazakia GJ. MR-based techniques for intracortical vessel visualization and characterization: understanding the impact of microvascular disease on skeletal health. Curr Opin Endocrinol Diabetes Obes 2023; 30:192-199. [PMID: 37335282 PMCID: PMC10461604 DOI: 10.1097/med.0000000000000819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW The relationships between bone vasculature and bone microstructure and strength remain incompletely understood. Addressing this gap will require in vivo imaging capabilities. We describe the relevant vascular anatomy of compact bone, review current magnetic resonance imaging (MRI)-based techniques that allow in vivo assessment of intracortical vasculature, and finally present preliminary studies that apply these techniques to investigate changes in intracortical vessels in aging and disease. RECENT FINDINGS Ultra-short echo time MRI (UTE MRI), dynamic contrast-enhanced MRI (DCE-MRI), and susceptibility-weighted MRI techniques are able to probe intracortical vasculature. Applied to patients with type 2 diabetes, DCE-MRI was able to find significantly larger intracortical vessels compared to nondiabetic controls. Using the same technique, a significantly larger number of smaller vessels was observed in patients with microvascular disease compared to those without. Preliminary data on perfusion MRI showed decreased cortical perfusion with age. SUMMARY Development of in vivo techniques for intracortical vessel visualization and characterization will enable the exploration of interactions between the vascular and skeletal systems, and further our understanding of drivers of cortical pore expansion. As we investigate potential pathways of cortical pore expansion, appropriate treatment and prevention strategies will be clarified.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-Hung Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| |
Collapse
|
4
|
Agarwal S, Shiau S, Kamanda-Kosseh M, Bucovsky M, Kil N, Lappe JM, Stubby J, Recker RR, Guo XE, Shane E, Cohen A. Teriparatide Followed by Denosumab in Premenopausal Idiopathic Osteoporosis: Bone Microstructure and Strength by HR-pQCT. J Bone Miner Res 2023; 38:35-47. [PMID: 36335582 DOI: 10.1002/jbmr.4739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: -5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sanchita Agarwal
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Stephanie Shiau
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NY, USA
| | - Mafo Kamanda-Kosseh
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Mariana Bucovsky
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Nayoung Kil
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Joan M Lappe
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Julie Stubby
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 16:100168. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Wang S, Yang X, Han Z, Wu X, Fan YB, Sun LW. Changes of cortical bone pores structure and their effects on mechanical properties in tail-suspended rats. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|