1
|
Yang G, Ding Y, Liu J, Rozi R, Ding Z, Li T, Jiang Q, Zhang H, Ma J, Han J, Ding Y. A novel endoscopic posterior cervical decompression and interbody fusion technique: Feasibility and biomechanical analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 262:108676. [PMID: 39983346 DOI: 10.1016/j.cmpb.2025.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND AND OBJECTIVE Cervical decompression and fusion, the primary surgical techniques for treating degenerative cervical myelopathy, is traditionally performed using interbody fusion through an anterior approach. There are no reported cases of cage placement performed via a posterior cervical approach under endoscopy. This study investigates a novel posterior interbody fusion technique using a newly designed split cage and validates its feasibility through computer simulations. METHODS Anatomical parameters of the posterior cervical safe area (PCSA) were analyzed, and a split interbody fusion cage was designed based on the anatomical parameters for endoscopic posterior cervical decompression and interbody fusion (Endo-PCDIF) surgery. Based on a validated intact C3-C7 cervical model, decompression-alone and Endo-PCDIF models were established via simulating operations, and comparisons were conducted among these models regarding the range of motions (ROMs), displacement, and stress distribution under the different motion conditions. RESULTS PCSA is surrounded by the dural sac, nerve roots, vertebral artery, and pedicle. Ideal operating space for Endo-PCDIF was achieved by grinding the partial osseous structure. After performing decompression-alone, ROMs at the operational segment increased significantly compared to the pre-operation (80%, 12%, 34%, 24%, 25%, and 10%). Endo-PCDIF reduced ROMs at the operational segment by 49%, 32%, 46%, 42%, 52%, and 39% compared to the decompression-alone. The split cage exhibited minimal displacement and no abnormal stress distribution was observed. CONCLUSIONS PCSA is a crucial surgical pathway for operation at ventral area of dural sac during posterior cervical endoscopy. Endo-PCDIF effectively maintained stability at the operational segment and reduced the biomechanical influence result in adjacent segments.
Collapse
Affiliation(s)
- Guangnan Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiwei Ding
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiang Liu
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Rigbat Rozi
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhili Ding
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Tusheng Li
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qiang Jiang
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Hanshuo Zhang
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jingbo Ma
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jiaheng Han
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yu Ding
- Orthopedics of TCM Senior Dept., the Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Liang Z, Wu K, Tian T, Mo F. Human head-neck model and its application thresholds: a narrative review. Int J Surg 2025; 111:1042-1070. [PMID: 38990352 PMCID: PMC11745654 DOI: 10.1097/js9.0000000000001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
There have been many studies on human head-neck biomechanical models in the last two decades, and the associated modelling techniques were constantly evolving at the same time. Computational approaches have been widely leveraged, in parallel to conventional physical tests, to investigate biomechanics and injuries of the head-neck system in fields like the automotive industry, orthopedic, sports medicine, etc. The purpose of this manuscript is to provide a global review of the existing knowledge related to the modelling approaches, structural and biomechanical characteristics, validation, and application of the present head-neck models. This endeavor aims to support further enhancements and validations in modelling practices, particularly addressing the lack of data for model validation, as well as to prospect future advances in terms of the topics. Seventy-four models subject to the proposed selection criteria are considered. Based on previously established and validated head-neck computational models, most of the studies performed in-depth investigations of included cases, which revolved around four specific subjects: physiopathology, treatment evaluation, collision condition, and sports injury. Through the review of the recent 20 years of research, the summarized modelling information indicated existing deficiencies and future research topics, as well as provided references for subsequent head-neck model development and application.
Collapse
Affiliation(s)
- Ziyang Liang
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People’s Republic of China
| | - Ke Wu
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| | - Tengfei Tian
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| | - Fuhao Mo
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| |
Collapse
|
3
|
Alcántara-Arreola EA, Silva-Garcés KN, Mendoza-Martínez J, Cardoso-Palomares MA, Torres-SanMiguel CR. Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue. J Funct Biomater 2024; 15:238. [PMID: 39194675 DOI: 10.3390/jfb15080238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cortical tissues reorganize and remodel in response to tensile forces acting on them, while compressive forces cause atrophy. However, implants support most of the payload. Bones do not regenerate, and stress shielding occurs. The aim is to analyze the biomechanical behavior of a lumbar cage to study the implant's stress shielding. The ASTM E-9 standard was used with the necessary adjustments to perform compression tests on lumbar and thoracic porcine spinal vertebrae. Twelve cases were analyzed: six with the metal prosthesis and six with the PEEK implant. A mathematical model based on the Hertz contact theory is proposed to assess the stress shielding for endoprosthesis used in spine pathologies. The lumbar spacer (screw) helps to reduce the stress shielding effect due to the ACME thread. The best interspinous spacer is the PEEK screw. It does not embed in bone. The deformation capability increases by 11.5% and supports 78.6 kg more than a system without any interspinous spacer.
Collapse
Affiliation(s)
- Elliot Alonso Alcántara-Arreola
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Karla Nayeli Silva-Garcés
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Jocabed Mendoza-Martínez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Miguel Antonio Cardoso-Palomares
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Christopher René Torres-SanMiguel
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| |
Collapse
|
4
|
Bahreinizad H, Chowdhury SK. Implant Design and Cervical Spinal Biomechanics and Neurorehabilitation: A Finite Element Investigation. Mil Med 2024; 189:791-799. [PMID: 39160809 DOI: 10.1093/milmed/usae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION The cervical spine, pivotal for mobility and overall body function, can be affected by cervical spondylosis, a major contributor to neural disorders. Prevalent in both general and military populations, especially among pilots, cervical spondylosis induces pain and limits spinal capabilities. Anterior Cervical Discectomy and Fusion (ACDF) surgery, proposed by Cloward in the 1950s, is a promising solution for restoring natural cervical curvature. The study objective was to investigate the impacts of ACDF implant design on postsurgical cervical biomechanics and neurorehabilitation outcomes by utilizing a biofield head-neck finite element (FE) platform that can facilitate scenario-specific perturbations of neck muscle activations. This study addresses the critical need to enhance computational models, specifically FE modeling, for ACDF implant design. MATERIALS AND METHODS We utilized a validated head-neck FE model to investigate spine-implant biomechanical interactions. An S-shaped dynamic cage incorporating titanium (Ti) and polyetheretherketone (PEEK) materials was modeled at the C4/C5 level. The loading conditions were carefully designed to mimic helmet-to-helmet impact in American football, providing a realistic and challenging scenario. The analysis included intervertebral joint motion, disk pressure, and implant von Mises stress. RESULTS The PEEK implant demonstrated an increased motion in flexion and lateral bending at the contiguous spinal (C4/C5) level. In flexion, the Ti implant showed a modest 5% difference under 0% activation conditions, while PEEK exhibited a more substantial 14% difference. In bending, PEEK showed a 24% difference under 0% activation conditions, contrasting with Ti's 17%. The inclusion of the head resulted in an average increase of 18% in neck angle and 14% in C4/C5 angle. Disk pressure was influenced by implant material, muscle activation level, and the presence of the head. Polyetheretherketone exhibited lower stress values at all intervertebral disc levels, with a significant effect at the C6/C7 levels. Muscle activation level significantly influenced disk stress at all levels, with higher activation yielding higher stress. Titanium implant consistently showed higher disk stress values than PEEK, with an orders-of-magnitude difference in von Mises stress. Excluding the head significantly affected disk and implant stress, emphasizing its importance in accurate implant performance simulation. CONCLUSIONS This study emphasized the use of a biofidelic head-neck model to assess ACDF implant designs. Our results indicated that including neck muscles and head structures improves biomechanical outcome measures. Furthermore, unlike Ti implants, our findings showed that PEEK implants maintain neck motion at the affected level and reduce disk stresses. Practitioners can use this information to enhance postsurgery outcomes and reduce the likelihood of secondary surgeries. Therefore, this study makes an important contribution to computational biomechanics and implant design domains by advancing computational modeling and theoretical knowledge on ACDF-spine interaction dynamics.
Collapse
Affiliation(s)
| | - Suman K Chowdhury
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409-3061, USA
| |
Collapse
|
5
|
Al-Adli NN, Tummala S, Oh MC. Early radiographic outcomes after anterior cervical discectomy and fusion with anatomic versus lordotic cages. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 17:100292. [PMID: 38193109 PMCID: PMC10772290 DOI: 10.1016/j.xnsj.2023.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
Background Anterior cervical discectomy and fusion (ACDF) interbody implants are shaped anatomically, with a convex superior aspect, or lordotically, with an angle and flat surfaces. However, the effect of implant shape on cervical sagittal balance (CSB) is not well described. Methods Of the 192 cases reviewed from 2018 to 2019, 118 were included with matching pre- and postoperative imaging. Cases were categorized by interbody implant type (anatomic or lordotic) and number of levels fused (1-level, 2-level, etc.). SurgiMap was used to measure cervical lordosis (CL), C2-C7 sagittal vertical axis (cSVA), T1 slope (T1S), and T1S minus CL (T1S-CL) on pre- and postoperative imaging. Pre- and postoperative parameters were compared within and between each cohort. Change in CL (ΔCL), cSVA (ΔcSVA), and T1S-CL (ΔT1S-CL) were calculated as the difference between pre- and postoperative values and were compared accordingly (1) anatomic versus lordotic and (2) 1-level versus 2-level versus 3-level fusion. Results Thirty-nine (33.1%), 57 (48.3%), and 22 (18.6%) cases comprised the anatomic, lordotic, and mixed (anatomic and lordotic) groups, respectively. ACDFs improved CL and T1S-CL by 5.71° (p<.001) and 3.32° (p<.01), respectively. CL was improved in the lordotic (5.27°; p<.01) and anatomic (4.57°; p<.01) groups, while only the lordotic group demonstrated improvement in T1S-CL (3.4°; p=.02). There were no differences in ΔCL (p=.70), ΔcSVA (p=.89), or ΔT1S-CL (p=.1) between the groups. Two- and 3-level fusions improved CL by 7.48° (p<.01) and 9.62° (p<.01), and T1S-CL by 4.43° (p<.01) and 5.96° (p<.01), respectively. Conclusions Overall, ACDFs significantly improved CL and T1S-CL however, there were no differences in CSB correction between the anatomic and lordotic groups. Two- and 3-level fusions more effectively improved CL (vs. single-level) and T1S-CL (vs. 3-level). These results suggest that implants should continue to be personalized to the patient's anatomy, however, future research is needed to validate these findings and incorporate the effects of preoperative deformities.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Texas Christian University School of Medicine, TCU Box 297085, Fort Worth, Texas 76129, USA
| | - Siri Tummala
- Texas Christian University School of Medicine, TCU Box 297085, Fort Worth, Texas 76129, USA
| | - Michael C. Oh
- Methodist Moody Brain and Spine Institute, 1411 North Beckley Ave, Pavilion III, Suite 152, Dallas, TX 75203, USA
| |
Collapse
|
6
|
Hoelen TCA, Willems PC, Loenen A, Meisel HJ, Wang JC, Jain A, Buser Z, Arts JJ. The Evidence for the Use of Osteobiologics in Hybrid Constructs (Anterior Cervical Discectomy and Fusion and Total Disc Replacement) in Multilevel Cervical Degenerative Disc Disease: A Systematic Review. Global Spine J 2024; 14:120S-128S. [PMID: 38421323 PMCID: PMC10913915 DOI: 10.1177/21925682221150795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE Examine the clinical evidence for the use of osteobiologics in hybrid surgery (combined anterior cervical discectomy and fusion (ACDF) and total disc replacement (TDR)) in patients with multilevel cervical degenerative disc disease (DDD). METHODS PubMed and Embase were searched between January 2000 and August 2020. Clinical studies investigating 18-80 year old patients with multilevel cervical DDD who underwent hybrid surgery with or without the use of osteobiologics were considered eligible. Two reviewers independently screened and assessed the identified articles. The methodological index for non-randomized studies (MINORS) tool and the risk of bias (RoB 2.0) assessment tool were used to assess risk of bias. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to evaluate quality of evidence across studies per outcome. RESULTS Eleven studies were included. A decrease in cervical range of motion was observed in most studies for both the hybrid surgery and the control groups consisting of stand-alone ACDF or TDR. Fusion rates of 70-100% were reported in both the hybrid surgery and control groups consisting of stand-alone ACDF. The hybrid surgery group performed better or comparable to the control group in terms of adjacent segment degeneration. Studies reported an improvement in visual analogue scale for pain and neck disability index values after surgery compared to preoperative scores for both treatment groups. The included studies had moderate methodological quality. CONCLUSIONS There is insufficient evidence for assessing the use of osteobiologics in multilevel hybrid surgery and additional high quality and controlled research is deemed essential.
Collapse
Affiliation(s)
- Thomay-Claire A Hoelen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paul C Willems
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arjan Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hans Jörg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost, Halle, Germany
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amit Jain
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Zorica Buser
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, USA
- Gerling Institute, Brooklyn, NY, USA
| | - Jacobus J Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
7
|
Zhang Y, Du S, Aiyiti W, Teng Y, Jia R, Jiang H. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages. Biomed Mater Eng 2024; 35:99-124. [PMID: 38217572 DOI: 10.3233/bme-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Intervertebral cages used in clinical applications were often general products with standard specifications, which were challenging to match with the cervical vertebra and prone to cause stress shielding and subsidence. OBJECTIVE To design and fabricate customized tantalum (Ta) intervertebral fusion cages that meets the biomechanical requirements of the cervical segment. METHODS The lattice intervertebral cages were customized designed and fabricated by the selective laser melting. The joint and muscle forces of the cervical segment under different movements were analyzed using reverse dynamics method. The stress characteristics of cage, plate, screws and vertebral endplate were analyzed by finite element analysis. The fluid flow behaviors and permeability of three lattice structures were simulated by computational fluid dynamics. Compression tests were executed to investigate the biomechanical properties of the cages. RESULTS Compared with the solid cages, the lattice-filled structures significantly reduced the stress of cages and anterior fixation system. In comparison to the octahedroid and quaddiametral lattice-filled cages, the bitriangle lattice-filled cage had a lower stress shielding rate, higher permeability, and superior subsidence resistance ability. CONCLUSION The inverse dynamics simulation combined with finite element analysis is an effective method to investigate the biomechanical properties of the cervical vertebra during movements.
Collapse
Affiliation(s)
- Yutao Zhang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Shu Du
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Yong Teng
- Department of Orthopaedics, Hospital of Xinjiang Military Region PLA, Urumqi, China
| | - Ru Jia
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Houfeng Jiang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
8
|
Lin M, Paul R, Dhar UK, Doulgeris J, O’Connor TE, Tsai CT, Vrionis FD. A Review of Finite Element Modeling for Anterior Cervical Discectomy and Fusion. Asian Spine J 2023; 17:949-963. [PMID: 37408489 PMCID: PMC10622829 DOI: 10.31616/asj.2022.0295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 07/07/2023] Open
Abstract
The cervical spine poses many complex challenges that require complex solutions. Anterior cervical discectomy and fusion (ACDF) has been one such technique often employed to address such issues. In order to address the problems with ACDF and assess the modifications that have been made to the technique over time, finite element analyses (FEA) have proven to be an effective tool. The variations of cervical spine FEA models that have been produced over the past couple of decades, particularly more recent representations of more complex geometries, have not yet been identified and characterized in any literature. Our objective was to present material property models and cervical spine models for various simulation purposes. The outlining and refinement of the FEA process will yield more reliable outcomes and provide a stable basis for the modeling protocols of the cervical spine.
Collapse
Affiliation(s)
- Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL,
USA
| | - Rudy Paul
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL,
USA
| | - Utpal Kanti Dhar
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL,
USA
| | - James Doulgeris
- Department of Neurosurgery, Marcus Neuroscience Institute, Baptist Health South Florida, Boca Raton, FL,
USA
| | - Timothy E. O’Connor
- Department of Neurosurgery, Marcus Neuroscience Institute, Baptist Health South Florida, Boca Raton, FL,
USA
| | - Chi-Tay Tsai
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL,
USA
| | - Frank D. Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Baptist Health South Florida, Boca Raton, FL,
USA
| |
Collapse
|
9
|
Wang H, Li N, Huang H, Xu P, Fan Y. Biomechanical effect of intervertebral disc degeneration on the lower lumbar spine. Comput Methods Biomech Biomed Engin 2023; 26:1669-1677. [PMID: 36218332 DOI: 10.1080/10255842.2022.2129970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/03/2022]
Abstract
Lumbar intervertebral disc degeneration can induce bone hyperplasia, lumbar intervertebral disc herniation and other diseases, is one of the causes of low back pain, which seriously affects people's quality of life. And the causes of degeneration are very complex, so it is essential to understand the underlying mechanism of intervertebral disc degeneration and its influence. In this study, biomechanical effects of L4∼L5 lumbar degeneration with different degrees of degeneration were studied based on the numerical simulations. The three-dimensional finite element model of normal L2∼S1 lumbar vertebrae was established based on CT images of average adult male and verified. Several key parameters (intervertebral disc height, nucleus pulposus size, properties of different materials, etc.) of the model were modified to construct L4∼L5 models with different degrees of degeneration (grade 1, grade 2, grade 3, and grade 4). The range of motion (ROM), the intradiscal pressure of the nucleus, and the maximum Von Mises stress were determined by applying torques in different directions to simulate the four postures of flexion, extension, lateral bending, and axial rotation under compression load (500 N) to simulate the upper body weight of the human body. In different postures, with the increase of L4∼L5 degeneration degree, the ROM of the L4∼L5 degeneration segment showed a decreasing trend (Grade 4 had decrease of 41.9% to 65.2% compared to normal at different postures), while the ROM of its adjacent normal segments showed an increasing trend (L3∼L4: Grade 4 had increase of 21%-94% compared to normal at different postures; L5∼S1: Grade 4 had increase of 32%-66% compared to normal at different postures). With the increase in the degree of degeneration, nucleus pulposus pressure in the L4∼L5 degeneration segment decreased continuously under different postural conditions (Grade 4 had decrease of 25%-134.6% compared to normal at different postures), while the nucleus pulposus pressure in adjacent normal segments (L3∼L4 and L5∼S1) showed a gradually increasing trend. The maximum Von Mises stress of the three segments increased with the increasing degree of degeneration at different postures (L4∼L5: Grade 4 increased to 1.75 ∼ 4 times compared to normal at different postures). In four different models of lumbar disc degeneration, the adjacent normal segment of the disc compensates for the movement and loading pattern of the degenerated segment. At the same time, the load pattern inside the degenerated segment also changes.
Collapse
Affiliation(s)
- Hongkun Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, the Fourth Clinical Medical College of Peking University, Beijing, China
| | - Huiwen Huang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng Xu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
10
|
Cheng CH, Chiu PY, Chen HB, Niu CC, Nikkhoo M. The influence of over-distraction on biomechanical response of cervical spine post anterior interbody fusion: a comprehensive finite element study. Front Bioeng Biotechnol 2023; 11:1217274. [PMID: 37650042 PMCID: PMC10464836 DOI: 10.3389/fbioe.2023.1217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Anterior cervical discectomy and fusion (ACDF) has been considered as the gold standard surgical treatment for cervical degenerative pathologies. Some surgeons tend to use larger-sized interbody cages during ACDF to restore the index intervertebral disc height, hence, this study evaluated the effect of larger-sized interbody cages on the cervical spine with ACDF under both static and cyclic loading. Method: Twenty pre-operative personalized poro-hyperelastic finite element (FE) models were developed. ACDF post-operative models were then constructed and four clinical scenarios (i.e., 1) No-distraction; 2) 1 mm distraction; 3) 2 mm distraction; and 4) 3 mm distraction) were predicted for each patient. The biomechanical responses at adjacent spinal levels were studied subject to static and cyclic loading. Non-parametric Friedman statistical comparative tests were performed and the p values less than 0.05 were reflected as significant. Results: The calculated intersegmental range of motion (ROM) and intradiscal pressure (IDP) from 20 pre-operative FE models were within the overall ranges compared to the available data from literature. Under static loading, greater ROM, IDP, facet joint force (FJF) values were detected post ACDF, as compared with pre-op. Over-distraction induced significantly higher IDP and FJF in both upper and lower adjacent levels in extension. Higher annulus fibrosus stress and strain values, and increased disc height and fluid loss at the adjacent levels were observed in ACDF group which significantly increased for over-distraction groups. Discussion: it was concluded that using larger-sized interbody cages (the height of ≥2 mm of the index disc height) can result in remarkable variations in biomechanical responses of adjacent levels, which may indicate as risk factor for adjacent segment disease. The results of this comprehensive FE investigation using personalized modeling technique highlight the importance of selecting the appropriate height of interbody cage in ACDF surgery.
Collapse
Affiliation(s)
- Chih-Hsiu Cheng
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ping-Yeh Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hung-Bin Chen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chien Niu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mohammad Nikkhoo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhang K, Zhu Y, Wang W. Application of nano-hydroxyapatite matrix graft in inter-vertebral fusion therapy: a meta-analysis. BMC Musculoskelet Disord 2023; 24:427. [PMID: 37245034 DOI: 10.1186/s12891-023-06405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVE Nano-hydroxyapatite and its composites(nHA) have been widely used as grafts in inter-vertebral fusion. However, the safety and efficacy of the graft in inter-vertebral fusion is controversial. This meta-analysis aimed at evaluating the safety and efficacy of nHA and non-hydroxyapatite grafts (noHA) (autologous bone, etc.) in inter-body fusion. MATERIALS AND METHODS A comprehensive search was performed in electronic database as follows: PubMed, EMBASE, the Cochrane Library, Web of Science, and China National Knowledge Internet (CNKI) from inception until October 2022. Clinical studies on the effect of nHA and noHA in spinal fusion were collected. Analysis of outcome indicators using RevMan 5.4 statistical software. RESULTS The meta-analysis showed that the operation time of patients who underwent inter-body fusion with nHA grafts was less than that of patients who underwent noHA (p < 0.05). Compared with the noHA group, the nHA group can achieve similar clinical effects in the fusion rate(OR = 1.29,95%CI: 0.88 to 1.88,p = 0.19),Subsidence rate(OR = 1.2,95%CI:0.44 to 3.28,p = 0.72), inter-vertebral space height(SMD = 0.04,95%CI:-0.08 to 0.15,p = 0.54),Cobb angle(SMD = 0.21,95%CI: 0.18 to 0.6,p = 0.21),Blood loss(SMD = -36.58,95%CI: -81.45 to 8.29,p = 0.11),operative time in 12 months(SMD = -5.82,95%CI: -9.98 to -1.67,p = 0.006) and in the final follow-up(SMD = -0.38,95%CI: -0.51 to -0.26,p < 0.00001),ODI(SMD = 0.68,95%CI: -0.84 to 2.19,p = 0.38), VAS(SMD = 0.17,95%CI: -0.13 to 0.48,p = 0.27) and adverse events(OR = 0.98,95%CI: 0.66 to 1.45,p = 0.92), and the differences are not statistically significant. CONCLUSION This meta-analysis suggests that nHA matrix grafts are similar to noHA grafts in the safety and efficacy of spinal reconstruction, and are an ideal material for inter-vertebral bone grafting.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Yandong Zhu
- Department of Orthopedics, Ninth Hospital of Xi'An, Xi'An, 710000, China
| | - Wenji Wang
- Department of Orthopedic, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Jalilvand E, Abollfathi N, Khajehzhadeh M, Hassani-Gangaraj M. Optimization of cervical cage and analysis of its base material: A finite element study. Proc Inst Mech Eng H 2022; 236:1613-1625. [DOI: 10.1177/09544119221128467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nowadays, cervical disorders are common due to human lifestyles. Accordingly, the cage design should be optimized as an essential issue. For an optimal design, an objective function is utilized to calculate the proper geometrical parameters. Additionally, the base material of the cage plays a key role in its functionality and final cost. Novel materials are currently introduced with more compatibility with the bone in terms of mechanical and chemical properties. In this study, a cervical cage was modeled based on PEEK material with three types of tooth designs on its surface. The cervical cage is assumed to be implanted between C6 and C7 vertebrae. The geometric parameters of the cage were optimized to minimize the mass by determining allowable stress and subsidence. The effect of complete cortical removal was investigated as a surgical mistake. Finally, a new composition of PEEK/titanium was introduced as the base material of the cage. Ansys 18.2 was used for FEA. The cage with a straight tooth was chosen due to its lower stress and subsidence compared with other designs. Furthermore, the optimized structures of all three tooth designs were determined. The mass and volume of the optimal cages were reduced by 41.47% and 41.52% respectively. Besides, complete cortical resection should not be carried out during fusion surgery, since it may lead to higher subsidence. The composition of PEEK/titanium was chosen as an appropriate base material due to its better performance compared with PEEK or titanium alone.
Collapse
Affiliation(s)
- Elahe Jalilvand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nabiolah Abollfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohsen Khajehzhadeh
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
13
|
Jin K, Zhu Y, Li N, Li Y, Yao Y, Mo Z, Fan Y. Biomechanical effect of posterior ligament repair in lamina repair surgery. Comput Methods Biomech Biomed Engin 2022; 26:799-806. [PMID: 35762201 DOI: 10.1080/10255842.2022.2089024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cervical laminectomy has usually been applied in treating cervical spinal cord tumour. However, spinal instability after laminectomy was observed with high occurrence rate, due to excising of posterior structures. This study was to investigate the biomechanical performances of ligament repair on the cervical stability in lamina repair surgery. A finite element of cervical spine model (C2-C7) was developed, and lamina repair surgery with and without ligament repair was simulated at C3-C6 segments. All models were loaded with pure moment of 1.5 Nm to produce flexion, extension, lateral blending and axial torsion. Compared to intact model, the range of motion (ROM) at C2-C3, C6-C7 increased by 12.8%-113.6% in lamina repair model (LRM), while the change of ROM in other segments was less than 9.2%. The change of ROM in all segments in the lamina and ligament repair model (LLRM) was less than 7.2%. The maximal intradiscal pressure (IDP) in adjacent segment (C2-C3 and C6-C7) increased by 73.7%, and the maximal stresses in capsular ligament increased by 168.6% in LRM model. By the other hand, the change of facet joint contact stress, IDP and stresses in capsular ligament in LLRM model were less than 11.5%. The differences of stresses on bone-screw interface and screw-plate system in C4,C5 between LRM and LLRM were less than 5.9 MPa (2.7%), but this value in C3 and C6 were up to 105.7 MPa (41.8%). Laminectomy without reconstruction of posterior ligament resulted larger mobility in the adjacent segments, which might induce spinal instability as postoperative complications. Repairing or preserving the posterior ligament in the lamina repair is benefit to spinal integrity and stability.
Collapse
Affiliation(s)
- Kaixiang Jin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China.,School of Engineering Medicine, Beihang University, Beijing, P. R. China
| | - Yuanjun Zhu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, P. R. China
| | - Yinghui Li
- Beijing No.2 Middle School, Beijing, P. R. China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China.,School of Engineering Medicine, Beihang University, Beijing, P. R. China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Technical Aids Analysis and Identification Key Laboratory of the Ministry of Civil Affairs, National Research Centre for Rehabilitation Technical Aids, Beijing, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China.,School of Engineering Medicine, Beihang University, Beijing, P. R. China
| |
Collapse
|
14
|
Li N, Zhang Y, Tang Q, Wang H, He D, Yao Y, Fan Y. Porous interbody fusion cage design via topology optimization and biomechanical performance analysis. Comput Methods Biomech Biomed Engin 2022; 26:650-659. [PMID: 35652627 DOI: 10.1080/10255842.2022.2081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The porous interbody fusion cage could provide space and stable mechanical conditions for postoperative intervertebral bone ingrowth. It is considered to be an important implant in anterior cervical discectomy and internal fixation. In this study, two types of unit cells were designed using topology optimization method and introduced to the interbody fusion cage to improve the biomechanical performances of the cage. Topology optimization under two typically loading conditions was first conducted to obtain two unit cells (O-unit cell and D-unit cell) with the same volume fraction. Porous structures were developed by stacking the obtained unit cells in space, respectively. Then, porous interbody fusion cages were obtained by the Boolean intersection between the global structural layout and the porous structures. Finite element models of cervical spine were created that C5-C6 segment was fused by the designed porous cages. The range of motion (ROM) of the cervical spine, the maximum stress on the cage and the bone graft, and the stress and displacement distributions of the cage were analyzed. The results showed the ROMs of C5-C6 segment in D-unit cell and O-unit cell models were range from 0.14° to 0.25° under different loading conditions; the cage composed of the D-unit cells had a more uniform stress distribution, smaller displacement on cage, a more reasonable internal stress transfer mode (transmission along struts of the unit cell), and higher stress on the internal bone graft (0.617 MPa). In conclusion, the optimized porous cage is a promising candidate for fusion surgery, which would avoid the cage subsidence, and promote the fusion of adjacent endplates.
Collapse
Affiliation(s)
- Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, China
| | - Yang Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qiaohong Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongkun Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
15
|
Han L, Li Y, Li Z, Ma H, Wang C, Chen Q, Lu X. Biomechanical and Clinical Study of Rod Curvature in Single-Segment Posterior Lumbar Interbody Fusion. Front Bioeng Biotechnol 2022; 10:824688. [PMID: 35309996 PMCID: PMC8929399 DOI: 10.3389/fbioe.2022.824688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.
Collapse
Affiliation(s)
- Lin Han
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yongheng Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hongdao Ma
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenfeng Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Qiang Chen, ; Xuhua Lu,
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Qiang Chen, ; Xuhua Lu,
| |
Collapse
|
16
|
Manickam PS, Roy S. The biomechanical effects of S-type dynamic cage using Ti and PEEK for ACDF surgery on cervical spine varying loads. Int J Artif Organs 2021; 44:748-755. [PMID: 34387526 DOI: 10.1177/03913988211039525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anterior cervical discectomy with fusion (ACDF) is the common method to treat the cervical disc degeneration. The most serious problems in the fusion cages are adjacent disc degeneration, loss of lordosis, pain, subsidence, and migration of the cage. The objective of our work is to develop the three-dimensional finite element (FE) model from C3-C6 and virtually implant a designed S-type dynamic cage at C4-C5 segment of the model. The dynamic cage design will provide mobility in the early stage after ACDF surgery. Titanium (Ti) and PEEK (polyether ether ketone) were used as the material property for the cages. We applied the physiological motions at different loads from 0.5, 1, 1.5, 2.0 Nm to evaluate the dynamic cage design and the biomechanical performances of the designed S-type dynamic cage. It was observed that in all the loading condition the range of motion in the adjacent level was maintained and the maximum stress at the adjacent disc was reduced. The clinical significance of the S-type dynamic cage is better stress profile at the fusion level and adjacent segments which translates into higher rate of fusion, lower risk of cage subsidence, lower risk of adjacent segment degeneration, and good mechanical stability.
Collapse
Affiliation(s)
- Pechimuthu Susai Manickam
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Sandipan Roy
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
17
|
Manickam PS, Roy S, Shetty GM. Biomechanical Evaluation of a Novel S-Type, Dynamic Zero-Profile Cage Design for Anterior Cervical Discectomy and Fusion with Variations in Bone Graft Shape: A Finite Element Analysis. World Neurosurg 2021; 154:e199-e214. [PMID: 34246827 DOI: 10.1016/j.wneu.2021.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Variations in cage design, material, and graft shape can affect osteointegration and adjacent segment range of motion (ROM) and stress after anterior cervical discectomy and fusion (ACDF) surgery. This study aimed to evaluate the biomechanical properties of a novel dynamic cervical cage design in both titanium (Ti) and polyether ether ketone (PEEK) with variations in bone graft shape using a single level ACDF (FE) model. METHODS A 3-dimensional C3-C6 FE model was developed using computed tomography scan data from a healthy male subject. The novel S-shaped dynamic interbody fusion cage with a zero-profile fixation was inserted at the C4-C5 level with 4 different bone graft shapes (square, circular, rectangular, and elliptical). Changes in segmental ROM and maximum von Mises stresses at the fusion and adjacent segments were analyzed. RESULTS Both Ti and PEEK cages showed decreased ROM at the fusion and adjacent levels for all shapes of bone graft when compared with the intact spine model. The elliptical graft, for both Ti and PEEK cages, showed a lower percentage of reduction in segmental ROM at the fusion and adjacent levels (0%-5.6%) when compared with other graft shapes (0%-12%). Maximum stresses at the fusion level were lowest in Ti cage with elliptical graft (229.8-347.6 MPa) when compared with other shapes (241.2-476.2 MPa) in flexion, extension, and lateral bending. For the bone graft, maximum stresses were highest on the elliptical-shaped bone graft in flexion and extension in the Ti cage, and in flexion and lateral bending in the PEEK cage. CONCLUSIONS Both Ti and PEEK cages showed decreased ROM at the fusion and adjacent levels for all shapes of bone graft when compared with the intact spine model. In the Ti and PEEK dynamic cages, the elliptical shape bone graft showed decreased stress on the cage and increased stress on the bone graft. Further experimental and clinical studies are needed to confirm these encouraging biomechanical results of this novel dynamic, zero-profile fusion device with elliptical bone graft in ACDF surgery.
Collapse
Affiliation(s)
- Pechimuthu Susai Manickam
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu, India
| | - Sandipan Roy
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu, India.
| | - Gautam M Shetty
- Department of Orthopaedic Surgery, Knee & Orthopaedic Clinic, Mumbai, India; Department of Clinical Research, AIMD Research, Mumbai, India
| |
Collapse
|