1
|
Use of multivariate analysis to evaluate antigenic relationships between US BVDV vaccine strains and non-US genetically divergent isolates. J Virol Methods 2021; 299:114328. [PMID: 34710497 DOI: 10.1016/j.jviromet.2021.114328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023]
Abstract
Bovine viral diarrhea virus (BVDV) comprises two species, BVDV-1 and BVDV-2. But given the genetic diversity among pestiviruses, at least 22 subgenotypes are described for BVDV-1 and 3-4 for BVDV-2. Genetic characterization is generally accomplished through complete or partial sequencing and phylogeny, but it is not a reliable method to define antigenic relationships. The traditional method for evaluating antigenic relationships between pestivirus isolates is the virus neutralization (VN) assay, but interpretation of the data to define antigenic relatedness can be difficult to discern for BVDV isolates within the same BVDV species. Data from this study utilized a multivariate analysis for visualization of VN results to analyze the antigenic relationships between US vaccine strains and field isolates from Switzerland, Italy, Brazil, and the UK. Polyclonal sera were generated against six BVDV strains currently contained in vaccine formulations, and each serum was used in VNs to measure the titers against seven vaccine strains (including the six homologous strains) and 23 BVDV field isolates. Principal component analysis (PCA) was performed using VN titers, and results were interpreted from PCA clustering within the PCA dendrogram and scatter plot. The results demonstrated clustering patterns among various isolates suggesting antigenic relatedness. As expected, the BVDV-1 and BVDV-2 isolates did not cluster together and had the greatest spatial distribution. Notably, a number of clusters representing antigenically related BVDV-1 subgroups contain isolates of different subgenotypes. The multivariate analysis may be a method to better characterize antigenic relationships among BVDV isolates that belong to the same BVDV species and do not have distinct antigenic differences. This might be an invaluable tool to ameliorate the composition of current vaccines, which might well be important for the success of any BVDV control program that includes vaccination in its scheme.
Collapse
|
2
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
3
|
Comprehensive analysis of circRNAs expression profiles in different periods of MDBK cells infected with bovine viral diarrhea virus. Res Vet Sci 2019; 125:52-60. [PMID: 31146221 DOI: 10.1016/j.rvsc.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/24/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
CircRNAs play an important regulatory role in the regulation of disease. However, we have a limited understanding of the role of circRNAs in the host's complex protective and pathological mechanisms of BVDV infection. Transcriptome analysis of circRNAs in host cells after BVDV infection may allow us to understand the biological functions of circRNAs in the regulation of BVDV infection. Here, we identified a total of 19,118 circRNAs from the MBDK cells (at 12 h, 24 h, and 48 h post-infection) infected with BVDV by using RNA-seq technology. We confirmed several circRNAs using RT-PCR and DNA sequencing, and qRT-PCR analysis was performed to identify several circRNAs expression and circRNAs resistance to RNase R digestion. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that the host genes of differentially expressed circRNAs were involved in the regulation of cell proliferation, apoptosis, cycle and viral infection related signaling pathways. These results indicate that circRNA in host cells plays a broad regulatory role after BVDV infection and provides a valuable resource for studying circRNA biology in host cells after BVDV infection.
Collapse
|
4
|
Abstract
AbstractBovine viral diarrhea virus (BVDV) is an important infectious agent affecting herd productivity and reproduction, and leading to massive economic losses. As such, BVD is the subject of a number of control and eradication schemes globally. The key elements of such schemes are: diagnosis and removal of persistently infected animals from herds; implementation of biosecurity practices aimed at preventing the introduction or re-introduction of BVDV in free herds; and ongoing surveillance to monitor the progress of the program and to detect new infections. The objective of this review is to examine the impact of BVD and the management of the disease in three countries: Scotland, Spain, and Argentina, where BVD control programs are in distinct phases: established, developing, and yet to be initiated. This work also sets out to highlight potential difficulties and formulate recommendations for successful BVD control. It concludes that a systematic, countrywide approach is needed to achieve a sustainable decrease in BVD prevalence. The role of vaccines in control programs is concluded to be a valuable additional biosecurity measure. This study also concludes that there are potential wider benefits to a systematic BVD control program, such as a reduction in antimicrobial use and increases in the competitiveness of the cattle industry.
Collapse
|
5
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
6
|
Peddireddi L, Foster KA, Poulsen EG, An B, Hoang QH, O'Connell C, Anderson JW, Thomson DU, Hanzlicek GA, Bai J, Hesse RA, Oberst RD, Anderson GA, Leyva-Baca I. Molecular detection and characterization of transient bovine viral diarrhea virus (BVDV) infections in cattle commingled with ten BVDV persistently infected cattle. J Vet Diagn Invest 2018; 30:413-422. [PMID: 29322882 DOI: 10.1177/1040638717753962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifty-three cattle of unknown serologic status that were not persistently infected (PI) with bovine viral diarrhea virus (BVDV) were commingled with 10 cattle that were PI with different strains of BVDV, and were monitored for an extended commingle period using a reverse-transcription real-time PCR (RT-rtPCR) BVDV assay on various sample types. Transient infections with BVDV were also assessed by virus isolation, virus neutralization (VN) assays, and direct buffy coat 5'-UTR sequencing. Infections were demonstrated in all cattle by RT-rtPCR; however, the detection rate was dependent on the type of sample. Buffy coat samples demonstrated a significantly greater number of positive results ( p ≤ 0.05) than either serum or nasal swab samples. Presence of elevated BVDV VN titers at the onset inversely correlated with the number of test days positive that an individual would be identified by RT-rtPCR from buffy coat samples, and directly correlated with the average Ct values accumulated over all RT-rtPCR test days from buffy coat samples. Both single and mixed genotype/subgenotype/strain infections were detected in individual cattle by direct sample 5'-UTR sequencing. A BVDV-2a strain from a PI animal was found to be the predominant strain infecting 64% of all non-PI cattle; BVDV-1b strains originating from 3 PI cattle were never detected in non-PI cattle. Although direct sample 5'-UTR sequencing was capable of demonstrating mixed BVDV infections, identifying all strains suspected was not always efficient or possible.
Collapse
Affiliation(s)
- Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Kelly A Foster
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Elizabeth G Poulsen
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Baoyan An
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Quoc Hung Hoang
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Catherine O'Connell
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Joseph W Anderson
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Daniel U Thomson
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Gregg A Hanzlicek
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Richard A Hesse
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Richard D Oberst
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Gary A Anderson
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| | - Ivan Leyva-Baca
- Kansas State Veterinary Diagnostic Laboratory (Peddireddi, An, Poulsen, JW Anderson, Hanzlicek, Bai, Oberst, GA Anderson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Diagnostic Medicine/Pathobiology (Foster, Thomson), College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Animal Health Group, Thermo Fisher Scientific, Austin, TX (Hoang, O'Connell).,Life Technologies, Austin, TX (Leyva-Baca)
| |
Collapse
|
7
|
Yeşilbağ K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017; 9:v9060128. [PMID: 28587150 PMCID: PMC5490805 DOI: 10.3390/v9060128] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a–1u), while four subgenotypes have been described for BVDV-2 (2a–2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Gizem Alpay
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Paul Becher
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|
8
|
Workman AM, Heaton MP, Harhay GP, Smith TPL, Grotelueschen DM, Sjeklocha D, Brodersen B, Petersen JL, Chitko-McKown CG. Resolving Bovine viral diarrhea virus subtypes from persistently infected U.S. beef calves with complete genome sequence. J Vet Diagn Invest 2016; 28:519-28. [PMID: 27400958 DOI: 10.1177/1040638716654943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5'-UTR (5' untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought.
Collapse
Affiliation(s)
- Aspen M Workman
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Michael P Heaton
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Gregory P Harhay
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Dale M Grotelueschen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - David Sjeklocha
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Bruce Brodersen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Carol G Chitko-McKown
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
9
|
Craig MI, König GA, Benitez DF, Draghi MG. Molecular analyses detect natural coinfection of water buffaloes (Bubalus bubalis) with bovine viral diarrhea viruses (BVDV) in serologically negative animals. Rev Argent Microbiol 2015; 47:148-51. [PMID: 25962538 DOI: 10.1016/j.ram.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022] Open
Abstract
Infection of water buffaloes (Bubalus bubalis) with bovine viral diarrhea viruses (BVDV) has been confirmed in several studies by serological and molecular techniques. In order to determine the presence of persistently infected animals and circulating species and subtypes of BVDV we conducted this study on a buffalo herd, whose habitat was shared with bovine cattle (Bossp.). Our serological results showed a high level of positivity for BVDV-1 and BVDV-2 within the buffalo herd. The molecular analyses of blood samples in serologically negative animals revealed the presence of viral nucleic acid, confirming the existence of persistent infection in the buffaloes. Cloning and sequencing of the 5' UTR of some of these samples revealed the presence of naturally mix-infected buffaloes with at least two different subtypes (1a and 1b), and also with both BVDV species (BVDV-1 and BVDV-2).
Collapse
Affiliation(s)
- María I Craig
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina.
| | - Guido A König
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Morón, Buenos Aires, Argentina; Consejo de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel F Benitez
- Estación Experimental Agropecuaria (INTA), Mercedes, Corrientes, Argentina
| | - María G Draghi
- Estación Experimental Agropecuaria (INTA), Mercedes, Corrientes, Argentina
| |
Collapse
|
10
|
Homologous recombination in pestiviruses: Identification of three putative novel events between different subtypes/genogroups. INFECTION GENETICS AND EVOLUTION 2015; 30:219-224. [DOI: 10.1016/j.meegid.2014.12.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 11/20/2022]
|
11
|
Pecora A, Malacari DA, Ridpath JF, Perez Aguirreburualde MS, Combessies G, Odeón AC, Romera SA, Golemba MD, Wigdorovitz A. First finding of genetic and antigenic diversity in 1b-BVDV isolates from Argentina. Res Vet Sci 2013; 96:204-12. [PMID: 24295740 DOI: 10.1016/j.rvsc.2013.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 10/30/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
Infection with Bovine Viral Diarrhea Viruses (BVDV) in cattle results in a wide range of clinical manifestations, ranging from mild respiratory disease to fetal death and mucosal disease, depending on the virulence of the virus and the immune and reproductive status of the host. In this study 30 Argentinean BVDV isolates were characterized by phylogenetic analysis. The isolates were genotyped based on comparison of the 5' untranslated region (5' UTR) and the E2 gene. In both phylogenetic trees, 76% of the viruses were assigned to BVDV 1b, whereas BVDV 1a, 2a and 2b were also found. Eight of the BVDV 1b isolates were further characterized by cross-neutralization tests using guinea pig antisera and sera from bovines vaccinated with two different commercial vaccines. The results demonstrated the presence of a marked antigenic diversity among Argentinean BVDV isolates and suggest the need to incorporate BVDV 1b isolates in diagnostic strategies.
Collapse
Affiliation(s)
- A Pecora
- Virology Institute, Veterinary and Agricultural Science Research Centre, INTA Castelar, Buenos Aires, Argentina
| | - D A Malacari
- Virology Institute, Veterinary and Agricultural Science Research Centre, INTA Castelar, Buenos Aires, Argentina.
| | - J F Ridpath
- Ruminant Diseases and Immunology Research Unit USDA, Ames, USA
| | - M S Perez Aguirreburualde
- Virology Institute, Veterinary and Agricultural Science Research Centre, INTA Castelar, Buenos Aires, Argentina
| | - G Combessies
- Laboratorio Azul Diagnóstico, Buenos Aires, Argentina
| | - A C Odeón
- Laboratorio de Sanidad Animal, INTA Balcarce, Buenos Aires, Argentina
| | - S A Romera
- Virology Institute, Veterinary and Agricultural Science Research Centre, INTA Castelar, Buenos Aires, Argentina
| | - M D Golemba
- Departamento de Virología, Facultad de Farmacia y Bioquímica UBA, Buenos Aires, Argentina
| | - A Wigdorovitz
- Virology Institute, Veterinary and Agricultural Science Research Centre, INTA Castelar, Buenos Aires, Argentina
| |
Collapse
|
12
|
Abstract
Pestiviruses cause economically important diseases among domestic ruminants and pigs, but they may also infect a wide spectrum of wild species of even-toed ungulates (Artiodactyla). Bovine viral diarrhea virus (BVDV) and Border disease virus of sheep infect their hosts either transiently or persistently. Cellular and humoral immunotolerance to the infecting strain is a unique feature of persistent infection (PI) by ruminant pestiviruses. Persistence, caused by transplacental infection early in fetal development, depends on virally encoded interferon antagonists that inactivate the host's innate immune response to the virus without globally interfering with its function against other viruses. At epidemiological equilibrium, approximately 1-2% of animals are PI. Successful BVDV control programs show that removal of PI animals results in viral extinction in the host population. The nucleotide sequences of ruminant pestiviruses change little during persistent infection. Nevertheless, they display large heterogeneity, pointing to a long history of virus-host coevolution in which avirulent strains are more successful.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Veterinary Virology, University of Bern, CH-3001 Bern, Switzerland; ,
| | | |
Collapse
|
13
|
Couvreur B, Letellier C, Olivier F, Dehan P, Elouahabi A, Vandenbranden M, Ruysschaert JM, Hamers C, Pastoret PP, Kerkhofs P. Sequence-optimised E2 constructs from BVDV-1b and BVDV-2 for DNA immunisation in cattle. Vet Res 2007; 38:819-34. [PMID: 17727807 DOI: 10.1051/vetres:2007037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 05/14/2007] [Indexed: 11/14/2022] Open
Abstract
We report DNA immunisation experiments in cattle using plasmid constructs that encoded glycoprotein E2 from bovine viral diarrhoea virus (BVDV)-1 (E2.1) and BVDV-2 (E2.2). The coding sequences were optimised for efficient expression in mammalian cells. A modified leader peptide sequence from protein gD of BoHV1 was inserted upstream of the E2 coding sequences for efficient membrane export of the proteins. Recombinant E2 were efficiently expressed in COS7 cells and they presented the native viral epitopes as judged by differential recognition by antisera from cattle infected with BVDV-1 or BVDV-2. Inoculation of pooled plasmid DNA in young cattle elicited antibodies capable of neutralising viral strains representing the major circulating BVDV genotypes.
Collapse
Affiliation(s)
- Bernard Couvreur
- Department of Virology, Veterinary and Agrochemical Research Centre, Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hellen CUT, de Breyne S. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 2007; 81:5850-63. [PMID: 17392358 PMCID: PMC1900287 DOI: 10.1128/jvi.02403-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The 5' untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5' UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5' UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 44, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
15
|
Jones LR, Zandomeni RO, Weber EL. A long distance RT-PCR able to amplify the Pestivirus genome. J Virol Methods 2006; 134:197-204. [PMID: 16497393 PMCID: PMC7112918 DOI: 10.1016/j.jviromet.2006.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 01/03/2006] [Accepted: 01/10/2006] [Indexed: 01/08/2023]
Abstract
A method to amplify long genomic regions (up to approximately 12.3 kb) from pestiviruses in one RT-PCR is described. The difficulty in designing conserved Pestivirus primers for the amplification of genomes from highly divergent isolates simply by means of overlapping segments is demonstrated using new bioinformatic tools. An alternative procedure consisting of optimizing the length of the genomic cDNA fragments and their subsequent amplification by polymerase chain reaction (PCR) using a limited set of specific primers is described. The amplification of long DNA fragments from a variety of sources, including genomic, mitochondrial, and viral DNAs as well as cDNA produced by reverse transcription (RT) has been achieved using this methodology, known as long distance PCR. In the case of viruses, it is necessary to obtain viral particles from infected cells prior to RT procedures. This work provides improvements in four steps of long distance RT-PCR (L-RT-PCR): (i) preparation of a viral stock, (ii) preparation of template RNA, (iii) reverse transcription and (iv) amplification of the cDNA by LD-PCR. The usefulness of L-RT-PCR is discussed in the light of current knowledge on pestivirus diversity. The genomic sequence of Singer_Arg reference strain obtained using this method is presented and characterized.
Collapse
Affiliation(s)
- Leandro R. Jones
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25, (1712) Castelar, Buenos Aires, Argentina
| | - Rubén O. Zandomeni
- Instituto de Microbiología y Zoología Agrícola, CICVyA, INTA-Castelar, CC 25, (1712) Castelar, Buenos Aires, Argentina
| | - E. Laura Weber
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25, (1712) Castelar, Buenos Aires, Argentina
| |
Collapse
|