1
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
2
|
Pérez-Losada M, Arenas M, Castro-Nallar E. Microbial sequence typing in the genomic era. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:346-359. [PMID: 28943406 PMCID: PMC5908768 DOI: 10.1016/j.meegid.2017.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal; Children's National Medical Center, Washington, DC 20010, USA.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago 8370146, Chile
| |
Collapse
|
3
|
Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. Mutation and recombination in pathogen evolution: Relevance, methods and controversies. INFECTION GENETICS AND EVOLUTION 2017; 63:295-306. [PMID: 28951202 DOI: 10.1016/j.meegid.2017.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Mutation and recombination drive the evolution of most pathogens by generating the genetic variants upon which selection operates. Those variants can, for example, confer resistance to host immune systems and drug therapies or lead to epidemic outbreaks. Given their importance, diverse evolutionary studies have investigated the abundance and consequences of mutation and recombination in pathogen populations. However, some controversies persist regarding the contribution of each evolutionary force to the development of particular phenotypic observations (e.g., drug resistance). In this study, we revise the importance of mutation and recombination in the evolution of pathogens at both intra-host and inter-host levels. We also describe state-of-the-art analytical methodologies to detect and quantify these two evolutionary forces, including biases that are often ignored in evolutionary studies. Finally, we present some of our former studies involving pathogenic taxa where mutation and recombination played crucial roles in the recovery of pathogenic fitness, the generation of interspecific genetic diversity, or the design of centralized vaccines. This review also illustrates several common controversies and pitfalls in the analysis and in the evaluation and interpretation of mutation and recombination outcomes.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Catarina Branco
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, Washington, DC, United States; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
4
|
Shen H, Zhang W, Shao S. Phylogenetic and recombination analysis of genomic sequences of IHHNV. J Basic Microbiol 2015; 55:1048-52. [DOI: 10.1002/jobm.201400900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/05/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Hongxing Shen
- Medical School of Jiangsu University; Zhenjiang P. R. China
| | - Wen Zhang
- Medical School of Jiangsu University; Zhenjiang P. R. China
| | - Shihe Shao
- Medical School of Jiangsu University; Zhenjiang P. R. China
| |
Collapse
|
5
|
Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2013; 16:38-53. [PMID: 23357583 DOI: 10.1016/j.meegid.2013.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data, analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect to whole genome sequence typing approaches that are moving into the research arena at an ever-increasing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to include enough references in a variety of key areas to introduce the reader to the broad applications and complications of MLST data.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | | | | | | |
Collapse
|
6
|
Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 2012; 62:777-92. [PMID: 22138161 PMCID: PMC3258026 DOI: 10.1016/j.ympev.2011.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | |
Collapse
|
7
|
Kim JH, Kim HK, Nguyen VG, Park BK, Choresca CH, Shin SP, Han JE, Jun JW, Park SC. Genomic sequence of infectious hypodermal and hematopoietic necrosis virus (IHHNV) KLV-2010-01 originating from the first Korean outbreak in cultured Litopenaeus vannamei. Arch Virol 2011; 157:369-73. [PMID: 22038073 DOI: 10.1007/s00705-011-1155-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
Abstract
Due to the need to track and monitor genetic diversity, the genome of the infectious hypodermal and hematopoietic necrosis virus (IHHNV) strain KLV-2010-01 in cultured Litopenaeus vannamei shrimp that originated from the first Korean outbreak in 2010 was sequenced and analyzed. The genome, with a length of 3914 nucleotides, was sequenced from the Korean IHHNV. The genome encoded three large and overlapping open reading frames: ORF1 (NS-1) of 2001 bp, ORF2 (NS-2) of 1092 bp and ORF3 (capsid protein) of 990 bp. The overall organization, size and predicted amino acid sequence of the three ORFs in Korean IHHNV were highly similar to those of members of the infectious IHHNV group, and the most closely related strains were IHHNVs described from Ecuador and Hawaii. Additionally, phylogenetic analysis showed that the Korean IHHNV was clustered with lineage III in the infectious IHHNV group and was most similar to IHHNV isolates from Ecuador, China and Taiwan.
Collapse
Affiliation(s)
- J H Kim
- Laboratory of Aquatic Animal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Joannon B, Lavigne C, Lecoq H, Desbiez C. Barriers to gene flow between emerging populations of Watermelon mosaic virus in Southeastern France. PHYTOPATHOLOGY 2010; 100:1373-1379. [PMID: 20879843 DOI: 10.1094/phyto-04-10-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since 1999, "emerging" (EM) strains of Watermelon mosaic virus (WMV) have been detected in cucurbit crops of southeastern France, probably as a result of recent introductions. Population genetic approaches were used to study the structure of EM isolates in southeastern France and to identify factors involved in their spatial distribution. A population clustering method (SAMOVA) and a maximum-difference algorithm (Monmonier's algorithm) were combined to visualize and quantify barriers to gene flow between populations. Both methods yielded similar results and two main barriers were identified. A North/South oriented barrier may be related to physical obstacles to gene flow (Rhône River, presence of an area with few cucurbit crops). Although the barrier was very strong, some "crossing" events were detected. A second barrier, oriented Northwest to Southeast, was not correlated with obvious geographical features. The two methods used here are complementary and confirm the limited spread of WMV-EM isolates. This approach can be useful in epidemiology studies to characterize the structure of viral populations and identify barriers to gene flow.
Collapse
Affiliation(s)
- B Joannon
- INRA, Unité de Pathologie Vététale UR407, F-84140 Montfavet, France
| | | | | | | |
Collapse
|
9
|
Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 2010; 73:563-76. [PMID: 20533948 DOI: 10.1111/j.1574-6941.2010.00909.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The level and mechanisms of population mixing among faba bean (Vicia faba) rhizobia of different geographic origins (three ecoregions of China and several Western countries) were analysed by sequencing three chromosomal housekeeping loci (atpD, recA and glnII) and one nodulation gene (nodD). Eight distinct sublineages of Rhizobium leguminosarum bv. viciae (Rlv) were identified by concatenated sequences of chromosomal loci. structure analysis revealed admixture patterns of Rlv populations of different geographic origins. Recombination, particularly among these chromosomal loci, was revealed to be an important microevolutionary force in shaping the observed genetic diversity and the phylogeny of Rlv. The phylogeny of nodD is largely independent of that of the chromosomal loci, reflecting multiple gene transfers between sublineages and possibly selection imposed by different faba bean gene pools. The dominant nodulation genotype of faba bean rhizobia in the spring growing region of China is identical to the prevalent type of Europe, while the winter growing region of China has another related, but distinct, dominant nodulation genotype. Although several geographically specific sublineages of Rlv were observed, recombination and lateral gene transfer have driven the process of population mixing among different ecoregions of China or between China and countries to the west.
Collapse
Affiliation(s)
- Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Boucher Y, Bapteste E. Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective. Bioessays 2009; 31:526-36. [DOI: 10.1002/bies.200800216] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Archie EA, Luikart G, Ezenwa VO. Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol Evol 2009; 24:21-30. [PMID: 19027985 DOI: 10.1016/j.tree.2008.08.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
12
|
Smeesters PR, Mardulyn P, Vergison A, Leplae R, Van Melderen L. Genetic diversity of Group A Streptococcus M protein: Implications for typing and vaccine development. Vaccine 2008; 26:5835-42. [DOI: 10.1016/j.vaccine.2008.08.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
13
|
Abstract
Although organisms with linear chromosomes must solve the problem of fully replicating their chromosome ends, this chromosome configuration has emerged repeatedly during bacterial evolution and is evident in three divergent bacterial phyla. The benefit usually ascribed to this topology is the ability to boost genetic variation through increased recombination. But because numerous processes can impact linkage disequilibrium, such an effect is difficult to assess by comparing across bacterial taxa that possess different chromosome topologies. To test directly the contribution of chromosome architecture to genetic diversity and recombination, we examined sequence variation in strains of Agrobacterium Biovar 1, which are unique among sequenced bacteria in having both a circular and a linear chromosome. Whereas the allelic diversity among strains is generated principally by mutations, intragenic recombination is higher within genes situated on the circular chromosome. In contrast, recombination between genes is, on average, higher on the linear chromosome, but it occurs at the same rate as that observed between genes mapping to the distal portion of the circular chromosome. Collectively, our findings indicate that chromosome topology does not contribute significantly to either allelic or genotypic diversity and that the evolution of linear chromosomes is not based on a facility to recombine.
Collapse
|
14
|
Abstract
Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.
Collapse
Affiliation(s)
- Ted H M Mes
- Marine Microbiology, NIOO-CEME, Netherlands Institute of Ecology, Korringaweg 7, 4400 AC Yerseke, The Netherlands. /
| |
Collapse
|