1
|
Maina M, Musundi S, Kuja J, Waweru H, Kiboi D, Kanoi BN, Gitaka J. Genetic variation of the Plasmodium falciparum circumsporozoite protein in parasite isolates from Homabay County in Kenya. FRONTIERS IN PARASITOLOGY 2024; 3:1346017. [PMID: 39817167 PMCID: PMC11732096 DOI: 10.3389/fpara.2024.1346017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 01/18/2025]
Abstract
The Plasmodium falciparum Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within Pfcsp compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of Pfcsp, especially when deploying it across different geographical regions. In this study, we assessed the genetic diversity of the Pfcsp on isolates from Homabay County, a malaria-endemic region in western Kenya, and compared it against other isolates from Kenya. We extracted DNA from 27 microscopically confirmed P. falciparum positive samples and conducted Illumina sequencing to generate paired-end short reads. The sequences were then mapped to the Pf3D7 reference genome, and genetic variation was analyzed using bcftools. Additionally, we retrieved isolates from two other malaria-endemic regions in Kenya, Kisumu (n=58) and Kilifi (n=596), from MalariaGEN version 7 and compared their genetic diversity and natural selection. We also evaluated the predicted binding affinities for HLA class I and II supertype alleles for the identified haplotypes using NetMHCpan and NetMHCIIpan. Our results show that the N-terminal of PfCSP was relatively conserved with a notable mutation at A98G across all isolates. The number of NANP repeats varied across the three Kenyan sites within the central repeat region. Furthermore, the C-terminal region showed polymorphism within the Th2R and Th3R regions. Haplotype network analysis of the Kenyan isolates revealed 69 haplotypes, with the 3D7 reference being found in the most prevalent haplotype. When assessing the predicted binding affinities between supertypes in HLA class I and II with the identified haplotypes, we observed stronger predicted binding affinities to multiple haplotypes except for those containing the 3D7 reference. The results suggest the need to take into account the existing changes occurring in Pfcsp while developing malaria vaccines.
Collapse
Affiliation(s)
- Michael Maina
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sebastian Musundi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Josiah Kuja
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Harrison Waweru
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Jesse Gitaka
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| |
Collapse
|
2
|
He ZQ, Zhang QQ, Wang D, Hu YB, Zhou RM, Qian D, Yang CY, Lu DL, Li SH, Liu Y, Zhang HW. Genetic polymorphism of circumsporozoite protein of Plasmodium falciparum among Chinese migrant workers returning from Africa to Henan Province. Malar J 2022; 21:248. [PMID: 36030242 PMCID: PMC9419638 DOI: 10.1186/s12936-022-04275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is recognized as a major global public health problem. The malaria vaccine was important because the case fatality rate of falciparum malaria was high. Plasmodium falciparum circumsporozoite protein (PfCSP) is one of the potential vaccine candidates, but the genetic polymorphism of PfCSP raises concerns regarding the efficacy of the vaccine. This study aimed to investigate the genetic polymorphism of PfCSP and provide data for the improvement of PfCSP-based vaccine (RTS,S malaria vaccine). METHODS Blood samples were collected from 287 Chinese migrant workers who were infected with P. falciparum and returning from Africa to Henan Province during 2016-2018. The Pfcsp genes were analysed to estimate the genetic diversity of this parasite. RESULTS The results showed that there were two mutations at the N-terminus of imported Pfcsp in Henan Province, including insertion amino acids (58.71%, 118/201) and A → G (38.81%, 78/201). The number of repeats of tetrapeptide motifs (NANP/NVDP/NPNP/NVDA) in the central repeat region ranged mainly from 39 to 42 (97.51%, 196/201). A total of 14 nonsynonymous amino acid changes were found at the C-terminus. The average nucleotide difference (K) of imported Pfcsp in Henan Province was 5.719, and the haplotype diversity (Hd) was 0.964 ± 0.004. The estimated value of dN-dS was 0.047, indicating that the region may be affected by positive natural selection. The minimum number of recombination events (Rm) of imported Pfcsp in Henan Province was close to that in Africa. The analysis of genetic differentiation showed that there may be moderate differentiation between East Africa and North Africa (Fst = 0.06484), and the levels of differentiation in the other regions were very small (Fst < 0.05). CONCLUSIONS The N-terminus of Pfcsp was relatively conserved, and the central repeat region and the Th2R and Th3R regions of the C-terminus were highly polymorphic. The gene polymorphism pattern among Chinese migrant workers returning from Africa to Henan Province was consistent with that in Africa. The geographical pattern of population differentiation and the evidence of natural selection and gene recombination suggested that the effect of polymorphism on the efficacy of PfCSP-based vaccines should be considered.
Collapse
Affiliation(s)
- Zhi-Quan He
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Qun-Qun Zhang
- Fengtai District Center for Disease Control and Prevention, Beijing, China
| | - Dan Wang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Ya-Bo Hu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rui-Min Zhou
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Cheng-Yun Yang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - De-Ling Lu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Su-Hua Li
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China.
| | - Hong-Wei Zhang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China.
| |
Collapse
|
3
|
Insights into the molecular diversity of Plasmodium vivax merozoite surface protein-3γ (pvmsp3γ), a polymorphic member in the msp3 multi-gene family. Sci Rep 2020; 10:10977. [PMID: 32620822 PMCID: PMC7335089 DOI: 10.1038/s41598-020-67222-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Plasmodium vivax merozoite surface protein 3 (PvMSP3) is encoded by a multi-gene family. Of these, PvMSP3α, PvMSP3β and PvMSP3γ, are considered to be vaccine targets. Despite comprehensive analyses of PvMSP3α and PvMSP3β, little is known about structural and sequence diversity in PvMSP3γ. Analysis of 118 complete pvmsp3γ sequences from diverse endemic areas of Thailand and 9 reported sequences has shown 86 distinct haplotypes. Based on variation in insert domains, pvmsp3γ can be classified into 3 types, i.e. Belem, Salvador I and NR520. Imperfect nucleotide repeats were found in six regions of the gene; none encoded tandem amino acid repeats. Predicted coiled-coil heptad repeats were abundant in the protein and displayed variation in length and location. Interspersed phase shifts occurred in the heptad arrays that may have an impact on protein structure. Polymorphism in pvmsp3γ seems to be generated by intragenic recombination and driven by natural selection. Most P. vivax isolates in Thailand exhibit population structure, suggesting limited gene flow across endemic areas. Phylogenetic analysis has suggested that insert domains could have been subsequently acquired during the evolution of pvmsp3γ. Sequence and structural diversity of PvMSP3γ may complicate vaccine design due to alteration in predicted immunogenic epitopes among variants.
Collapse
|
4
|
Mohamed NS, Ali Albsheer MM, Abdelbagi H, Siddig EE, Mohamed MA, Ahmed AE, Omer RA, Muneer MS, Ahmed A, Osman HA, Ali MS, Eisa IM, Elbasheir MM. Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan. Malar J 2019; 18:333. [PMID: 31570093 PMCID: PMC6771110 DOI: 10.1186/s12936-019-2970-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa. Genetic diversity of the Sudanese P. falciparum based on the diversity in the circumsporozoite surface protein (PfCSP) has not been previously studied. Therefore, this study aimed to investigate the genetic diversity of the N-terminal region of the pfcsp gene. METHODS A cross-sectional molecular study was conducted; 50 blood samples have been analysed from different regions in Sudan. Patients were recruited from the health facilities of Khartoum, New Halfa, Red Sea, White Nile, Al Qadarif, Gezira, River Nile, and Ad Damazin during malaria transmission seasons between June to October and December to February 2017-2018. Microscopic and nested PCR was performed for detection of P. falciparum. Merozoite surface protein-1 was performed to differentiate single and multiple clonal infections. The N-terminal of the pfcsp gene has been sequenced using PCR-Sanger dideoxy method and analysed to sequences polymorphism including the numbers of haplotypes (H), segregating sites (S), haplotypes diversity (Hd) and the average number of nucleotide differences between two sequences (Pi) were obtained using the software DnaSP v5.10. As well as neutrality testing, Tajima's D test, Fu and Li's D and F statistics. RESULTS PCR amplification resulted in 1200 bp of the pfcsp gene. Only 21 PCR products were successfully sequenced while 29 were presenting multiple clonal P. falciparum parasite were not sequenced. The analysis of the N-terminal region of the PfCSP amino acids sequence compared to the reference strains showed five different haplotypes. H1 consisted of 3D7, NF54, HB3 and 13 isolates of the Sudanese pfcsp. H2 comprised of 7G8, Dd2, MAD20, RO33, Wellcome strain, and 5 isolates of the Sudanese pfcsp. H3, H4, and H5 were found in 3 distinct isolates. Hd was 0.594 ± 0.065, and S was 12. The most common polymorphic site was A98G; other sites were D82Y, N83H, N83M, K85L, L86F, R87L, R87F, and A98S. Fu and Li's D* test value was - 2.70818, Fu and Li's F* test value was - 2.83907, indicating a role of negative balancing selection in the pfcsp N-terminal region. Analysis with the global pfcsp N-terminal regions showed the presence of 13 haplotypes. Haplotypes frequencies were 79.4%, 17.0%, 1.6% and 1.0% for H1, H2, H3 and H4, respectively. Remaining haplotypes frequency was 0.1% for each. Hd was 0.340 ± 0.017 with a Pi of 0.00485, S was 18 sites, and Pi was 0.00030. Amino acid polymorphisms identified in the N-terminal region of global pfcsp were present at eight positions (D82Y, N83H/M, K85L/T/N, L86F, R87L/F, A98G/V/S, D99G, and G100D). CONCLUSIONS Sudanese pfcsp N-terminal region was well-conserved with only a few polymorphic sites. Geographical distribution of genetic diversity showed high similarity to the African isolates, and this will help and contribute in the deployment of RTS,S, a PfCSP-based vaccine, in Sudan.
Collapse
Affiliation(s)
- Nouh S Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan.
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Sinnar University, Sinnar, Sudan.
- Department of Molecular Biology, Institute of Zoology, University of Hohenheim, Stuttgart, Germany.
| | - Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Sinnar University, Sinnar, Sudan
- Department of Parasitology and Medical Entomology, East Nile College, Khartoum, Sudan
| | - Hanadi Abdelbagi
- Biotechnology Research Laboratory, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Emanuel E Siddig
- Unit of Applied Medical Sciences, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Mona A Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Abdallah E Ahmed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Rihab Ali Omer
- Department of Molecular Biology, Institute of Zoology, University of Hohenheim, Stuttgart, Germany
- Department of Molecular Biology, Institute of Parasitology, University of Leipzig, Leipzig, Germany
| | - Mohamed S Muneer
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
- Department of Internal Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Hussam A Osman
- Biotechnology Research Laboratory, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Mohamed S Ali
- Faculty of Medicine, Neelain University, Khartoum, Sudan
| | - Ibrahim M Eisa
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Alzaiem Alazhari University, Khartoum, Sudan
| | - Mohamed M Elbasheir
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Alzaiem Alazhari University, Khartoum, Sudan
| |
Collapse
|
5
|
Lê HG, Kang JM, Moe M, Jun H, Thái TL, Lee J, Myint MK, Lin K, Sohn WM, Shin HJ, Kim TS, Na BK. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J 2018; 17:361. [PMID: 30314440 PMCID: PMC6186114 DOI: 10.1186/s12936-018-2513-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum circumsporozoite protein (PfCSP) is one of the most extensively studied malaria vaccine candidates, but the genetic polymorphism of PfCSP within and among the global P. falciparum population raises concerns regarding the efficacy of a PfCSP-based vaccine efficacy. In this study, genetic diversity and natural selection of PfCSP in Myanmar as well as global P. falciparum were comprehensively analysed. METHODS Blood samples were collected from 51 P. falciparum infected Myanmar patients. Fifty-one full-length PfCSP genes were amplified from the blood samples through a nested polymerase chain reaction, cloned into a TA cloning vector, and then sequenced. Polymorphic characteristics and natural selection of Myanmar PfCSP were analysed using the DNASTAR, MEGA6, and DnaSP programs. Polymorphic diversity and natural selection in publicly available global PfCSP were also analysed. RESULTS The N-terminal and C-terminal non-repeat regions of Myanmar PfCSP showed limited genetic variations. A comparative analysis of the two regions in global PfCSP displayed similar patterns of low genetic diversity in global population, but substantial geographic differentiation was also observed. The most notable polymorphisms identified in the N-terminal region of global PfCSP were A98G and 19-amino acid length insertion in global population with different frequencies. Major polymorphic characters in the C-terminal region of Myanmar and global PfCSP were found in the Th2R and Th3R regions, where natural selection and recombination occurred. The central repeat region of Myanmar PfCSP was highly polymorphic, with differing numbers of repetitive repeat sequences NANP and NVDP. The numbers of the NANP repeats varied among global PfCSP, with the highest number of repeats seen in Asian and Oceanian PfCSP. Haplotype network analysis of global PfCSP revealed that global PfCSP clustered into 103 different haplotypes with geographically-separated populations. CONCLUSION Myanmar and global PfCSP displayed genetic diversity. N-terminal and C-terminal non-repeat regions were relatively conserved, but the central repeat region displayed high levels of genetic polymorphism in Myanmar and global PfCSP. The observed geographic pattern of genetic differentiation and the points of evidence for natural selection and recombination suggest that the functional consequences of the polymorphism should be considered for developing a vaccine based on PfCSP.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Mya Moe
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Hojong Jun
- Department of Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University College of Medicine, Suwon, 16499, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
6
|
Kosuwin R, Feng M, Makiuchi T, Putaporntip C, Tachibana H, Jongwutiwes S. Naturally acquired IgG antibodies to thrombospondin-related anonymous protein of Plasmodium vivax (PvTRAP) in Thailand predominantly elicit immunological cross-reactivity. Trop Med Int Health 2018; 23:923-933. [PMID: 29851184 DOI: 10.1111/tmi.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Thrombospondin-related anonymous protein (TRAP) is a prime candidate for a malaria vaccine. Antibodies to Plasmodium vivax TRAP (PvTRAP) occur upon natural infection while specific antigenic domains remain to be addressed. METHODS The PvTRAP sequences were determined from 73 P. vivax isolates from Tak and Ubon Ratchathani provinces collected in 2013. The recombinant proteins representing four variants each for domain II (A domain) and domain IV (thrombospondin repeat region) of PvTRAP circulating in these areas were used as antigens in enzyme-linked immunosorbent assay against 246 serum samples from P. vivax-infected patients in both provinces collected during 2013 and 2014. RESULTS The prevalence of total IgG antibodies to at least one variant antigen of domain II and domain IV was 63.8% and 71.5%, respectively. Differential IgG antibody responses to these variant antigens of each domain were observed. Total IgG antibody responses to the variant antigens of each domain upon pairwise comparisons were highly correlated, suggesting immunological cross-reactivity in the majority of serum samples. A smaller proportion of serum samples contained non-cross-reactive antibodies to variants of each domain; particularly domain II in which amino acid differences significantly influenced antibody recognition. Previous malaria exposure positively affected antibody responses to domain IV. Positive seroconversion and rising antibody titres occurred within a few weeks after resolution of infections. CONCLUSIONS Both domains II and IV are targets of naturally acquired IgG antibodies. Despite sequence variation in these domains, most antibody responses were cross-reactive. A cross-sectional evaluation of antibodies to PvTRAP during acute infection could underestimate the seroprevalence.
Collapse
Affiliation(s)
- Rattiporn Kosuwin
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Molecular Biology of Malaria and Opportinistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Meng Feng
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportinistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportinistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Early AM, Lievens M, MacInnis BL, Ockenhouse CF, Volkman SK, Adjei S, Agbenyega T, Ansong D, Gondi S, Greenwood B, Hamel M, Odero C, Otieno K, Otieno W, Owusu-Agyei S, Asante KP, Sorgho H, Tina L, Tinto H, Valea I, Wirth DF, Neafsey DE. Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nat Commun 2018; 9:1381. [PMID: 29643376 PMCID: PMC5895824 DOI: 10.1038/s41467-018-03807-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Host immunity exerts strong selective pressure on pathogens. Population-level genetic analysis can identify signatures of this selection, but these signatures reflect the net selective effect of all hosts and vectors in a population. In contrast, analysis of pathogen diversity within hosts provides information on individual, host-specific selection pressures. Here, we combine these complementary approaches in an analysis of the malaria parasite Plasmodium falciparum using haplotype sequences from thousands of natural infections in sub-Saharan Africa. We find that parasite genotypes show preferential clustering within multi-strain infections in young children, and identify individual amino acid positions that may contribute to strain-specific immunity. Our results demonstrate that natural host defenses to P. falciparum act in an allele-specific manner to block specific parasite haplotypes from establishing blood-stage infections. This selection partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines targeting such proteins should account for allele-specific immunity. Host immune responses exert selective pressure on Plasmodium falciparum. Here, the authors show that allele-specific immunity impacts the antigenic diversity of individual malaria infections. This process partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines should account for allele-specific immunity.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | | | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Sarah K Volkman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Simmons College, School of Nursing and Health Sciences, Boston, MA, 02115, USA
| | - Samuel Adjei
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Tsiri Agbenyega
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Daniel Ansong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Stacey Gondi
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Brian Greenwood
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Mary Hamel
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Chris Odero
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Kephas Otieno
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | | | - Seth Owusu-Agyei
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Kintampo Health Research Centre, Kintampo, 200, Ghana.,University of Health and Allied Science, PMB 31, Ho, Volta Region, Ghana
| | | | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Lucas Tina
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Innocent Valea
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Bowman NM, Congdon S, Mvalo T, Patel JC, Escamilla V, Emch M, Martinson F, Hoffman I, Meshnick SR, Juliano JJ. Comparative population structure of Plasmodium falciparum circumsporozoite protein NANP repeat lengths in Lilongwe, Malawi. Sci Rep 2013; 3:1990. [PMID: 23771124 PMCID: PMC3683670 DOI: 10.1038/srep01990] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 02/05/2023] Open
Abstract
Humoral immunity to Plasmodium falciparum circumsporozoite protein is partly mediated by a polymorphic NANP tetra-amino acid repeat. Antibody response to these repeats is the best correlate of protective immunity to the RTS,S malaria vaccine, but few descriptions of the natural variation of these repeats exist. Using capillary electrophoresis to determine the distribution of NANP repeat size polymorphisms among 98 isolates from Lilongwe, Malawi, we characterised the diversity of P. falciparum infection by several ecological indices. Infection by multiple distinct variants was common, and 20 distinct repeat sizes were identified. Diversity of P. falciparum appeared greater in children (18 variants) than adults (12 variants). There was evidence of genetic distance between different geographic regions by Nei's Standard Genetic Distance, suggesting parasite populations vary locally. We show that P. falciparum is very diverse with respect to NANP repeat length even on a local level and that diversity appears higher in children.
Collapse
Affiliation(s)
- Natalie M Bowman
- University of North Carolina-Chapel Hill, Department of Medicine, Division of Infectious Diseases, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, Choudhary V, Mittra P, Lumb V, Bharti PK, Udhayakumar V, Singh N, Jain V, Singh PP, Sharma YD. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One 2012; 7:e43430. [PMID: 22912873 PMCID: PMC3422267 DOI: 10.1371/journal.pone.0043430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Tauqeer Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sumiti Vinayak
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Hema Bora
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh Kumar Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Shoeb Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Mittra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vanshika Lumb
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Neeru Singh
- Regional Medical Research Centre for Tribals, Jabalpur, Madhya Pradesh, India
| | - Vidhan Jain
- Regional Medical Research Centre for Tribals, Jabalpur, Madhya Pradesh, India
| | | | - Yagya Dutta Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Extensive polymorphism and evidence of immune selection in a highly dominant antigen recognized by bovine CD8 T cells specific for Theileria annulata. Infect Immun 2011; 79:2059-69. [PMID: 21300773 DOI: 10.1128/iai.01285-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although parasite strain-restricted CD8 T cell responses have been described for several protozoa, the precise role of antigenic variability in immunity is poorly understood. The tick-borne protozoan parasite Theileria annulata infects leukocytes and causes an acute, often fatal lymphoproliferative disease in cattle. Building on previous evidence of strain-restricted CD8 T cell responses to T. annulata, this study set out to identify and characterize the variability of the target antigens. Three antigens were identified by screening expressed parasite cDNAs with specific CD8 T cell lines. In cattle expressing the A10 class I major histocompatibility complex haplotype, A10-restricted CD8 T cell responses were shown to be focused entirely on a single dominant epitope in one of these antigens (Ta9). Sequencing of the Ta9 gene from field isolates of T. annulata demonstrated extensive sequence divergence, resulting in amino acid polymorphism within the A10-restricted epitope and a second A14-restricted epitope. Statistical analysis of the allelic sequences revealed evidence of positive selection for amino acid substitutions within the region encoding the CD8 T cell epitopes. Sequence differences in the A10-restricted epitope were shown to result in differential recognition by individual CD8 T cell clones, while clones also differed in their ability to recognize different alleles. Moreover, the representation of these clonal specificities within the responding CD8 T cell populations differed between animals. As well as providing an explanation for incomplete protection observed after heterologous parasite challenge of vaccinated cattle, these results have important implications for the choice of antigens for the development of novel subunit vaccines.
Collapse
|
11
|
Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL. Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol 2010; 27:2198-209. [PMID: 20427419 PMCID: PMC2922621 DOI: 10.1093/molbev/msq108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, attempts to explain the unusual size and prevalence of low-complexity regions (LCRs) in the proteins of the human malaria parasite Plasmodium falciparum have used both neutral and adaptive models. This past research has offered conflicting explanations for LCR characteristics and their role in, and influence on, the evolution of genome structure. Here we show that P. falciparum LCRs (PfLCRs) are not a single phenomenon, but rather consist of at least three distinct types of sequence, and this heterogeneity is the source of the conflict in the literature. Using molecular and population genetics, we show that these families of PfLCRs are evolving by different mechanisms. One of these families, named here the HighGC family, is of particular interest because these LCRs act as recombination hotspots, both in genes under positive selection for high levels of diversity which can be created by recombination (antigens) and those likely to be evolving neutrally or under negative selection (metabolic enzymes). We discuss how the discovery of these distinct species of PfLCRs helps to resolve previous contradictory studies on LCRs in malaria and contributes to our understanding of the evolution of the of the parasite's unusual genome.
Collapse
Affiliation(s)
- Martine M Zilversmit
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine 2010; 28:3112-7. [DOI: 10.1016/j.vaccine.2010.02.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 11/17/2022]
|
13
|
Putaporntip C, Jongwutiwes S, Grynberg P, Cui L, Hughes AL. Nucleotide sequence polymorphism at the apical membrane antigen-1 locus reveals population history of Plasmodium vivax in Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:1295-300. [PMID: 19643205 PMCID: PMC2790030 DOI: 10.1016/j.meegid.2009.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 11/18/2022]
Abstract
Apical membrane antigen-1 is a candidate for inclusion in a vaccine for the human malaria parasite Plasmodium vivax. We collected 231 complete sequences of the gene encoding this antigen (pvama-1) from three regions of Thailand, the most extensive collection to date of sequences at this locus. The domain II loop (previously mentioned as a potential vaccine component) was almost completely conserved, with a single amino acid variant (I313R) observed in a single sequence. The 3' portion of the gene (domain II through the stop codon) showed significantly lower nucleotide diversity than the 5' portion (start codon through domain I); and a given domain I sequence might be found in a haplotype with more than one domain II sequence. These results imply a hotspot of recombination between domains I and II. We found significant geographic subdivision among the three regions of Thailand (NW, East, and South) in which collections were made in 2007. Numbers of P. vivax infections have experienced overall declines since 1990 in all three regions; but the decline has been most recent in the NW, and there has been a rebound in numbers of infections in the South since 2000. Consistent with population history, amino acid sequence diversity was greatest in the NW. The South, which had by far the lowest sequence diversity of the three regions, showed signs of a population that has expanded from a small number of founders after a bottleneck.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- Evolution, Molecular
- Gene Frequency
- Genetic Variation
- Geography
- Humans
- Malaria Vaccines/immunology
- Malaria, Vivax/epidemiology
- Malaria, Vivax/etiology
- Malaria, Vivax/prevention & control
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Thailand/epidemiology
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Priscila Grynberg
- Departamento de Bioquímica e Immunologia, Instituto de Ciêcias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, PA16802, USA
| | - Austin L. Hughes
- Division of Biological Sciences, University of South Carolina, SC29208, USA
| |
Collapse
|