1
|
Cho YK, Lee J. Impact of INSTI on a Drug-Resistant Mutation (S68S Insertion) in a Patient Infected with HIV-1 CRF06_cpx. AIDS Res Hum Retroviruses 2025. [PMID: 39899370 DOI: 10.1089/aid.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
Previously, we reported a T69S insertion in the circulating recombinant form 06_cpx in a patient infected with HIV-1 during the perinatal period. Through this study, we found that the T69S insertion in our previous report was actually an S68S insertion. The patient was treated with zidovudine and didanosine, followed by combination antiretroviral therapy. The introduction of Korean Red Ginseng (KRG) completely suppressed plasma viral RNA to <20 copies/mL and reverted the S68S insertion to wild-type; there was no evidence of an S68S insertion for 3 years. Here, we report the impact of integrase strand transfer inhibitor (INSTI) treatment on drug resistance mutations (DRMs) over a further 10 years. The S68S insertion disappeared after 3 months of INSTI therapy, and the number of DRMs decreased. There were no major DRMs to INSTI in either the patient or her parents. These data highlight the utility of combination therapy with INSTI and KRG.
Collapse
Affiliation(s)
- Young-Keol Cho
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinny Lee
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cho YK, Kim JE, Lee J. Korean Red Ginseng slows coreceptor switch in HIV-1 infected patients. J Ginseng Res 2023; 47:117-122. [PMID: 36644395 PMCID: PMC9834003 DOI: 10.1016/j.jgr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background Human immunodeficiency virus-1 (HIV-1) that binds to the coreceptor CCR5 (R5 viruses) can evolve into viruses that bind to the coreceptor CXCR4 (X4 viruses), with high viral replication rates governing this coreceptor switch. Korean Red Ginseng (KRG) treatment of HIV-1 infected patients has been found to slow the depletion of CD4+ T cells. This study assessed whether the KRG-associated slow depletion of CD4+ T cells was associated with coreceptor switching. Methods This study included 146 HIV-1-infected patients naïve to antiretroviral therapy (ART) and seven patients receiving ART. A total of 540 blood samples were obtained from these patients over 122 ± 129 months. Their env genes were amplified by nested PCR or RT-PCR and subjected to direct sequencing. Tropism was determined with a 10% false positive rate (FPR) cutoff. Results Of the 146 patients naïve to ART, 102 were KRG-naïve, and 44 had been treated with KRG. Evaluation of initial samples showed that coreceptor switch had occurred in 19 patients, later occurring in 38 additional patients. There was a significant correlation between the amount of KRG and FPR. Based on initial samples, the R5 maintenance period was extended 2.35-fold, with the coreceptor switch being delayed 2.42-fold in KRG-treated compared with KRG-naïve patients. The coreceptor switch occurred in 85% of a homogeneous cohort. The proportion of patients who maintained R5 for ≥10 years was significantly higher in long-term slow progressors than in typical progressors. Conclusion KRG therapy extends R5 maintenance period by increasing FPR, thereby slowing the coreceptor switch.
Collapse
Affiliation(s)
- Young-Keol Cho
- Corresponding author. Department of Microbiology, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | | | | |
Collapse
|
3
|
Palm AA, Esbjörnsson J, Kvist A, Månsson F, Biague A, Norrgren H, Jansson M, Medstrand P. Intra-Patient Evolution of HIV-2 Molecular Properties. Viruses 2022; 14:v14112447. [PMID: 36366545 PMCID: PMC9698092 DOI: 10.3390/v14112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups. With declining CD4+ T-cell levels, slower progressors showed, on average, a decrease in the number of PNGSs, while faster progressors showed no significant change. Furthermore, diversity increased significantly with time in faster progressors, whereas no such change was observed in slower progressors. No differences were identified between the progressor groups in the evolution of length or charge of the analyzed Env regions. Predicted virus CXCR4 use was rare and did not emerge as a dominating viral population during the studied disease course (median 7.9 years, interquartile range [IQR]: 5.2-14.0) in either progressor groups. Further work building on our observations may explain molecular hallmarks of HIV-2 disease progression and differences in pathogenesis between HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Angelica A. Palm
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Correspondence:
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anders Kvist
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| | - Antonio Biague
- National Public Health Laboratory, Bissau 1041, Guinea-Bissau
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| |
Collapse
|
4
|
Hu X, Feng Y, Li K, Yu Y, Rashid A, Xing H, Ruan Y, Lu L, Wei M, Shao Y. Unique profile of predominant CCR5-tropic in CRF07_BC HIV-1 infections and discovery of an unusual CXCR4-tropic strain. Front Immunol 2022; 13:911806. [PMID: 36211390 PMCID: PMC9540210 DOI: 10.3389/fimmu.2022.911806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
CRF07_BC is one of the most prevalent HIV-1 strains in China, which contributes over one-third of the virus transmissions in the country. In general, CRF07_BC is associated with slower disease progression, while the underlying mechanisms remain unclear. Our study focused on envelope proteins (Env) and its V3 loop which determine viral binding to co-receptors during infection of cells. We studied a large dataset of 3,937 env sequences in China and found that CRF07_BC had a unique profile of predominantly single CCR5 tropism compared with CCR5 and CXCR4 dual tropisms in other HIV-1 subtypes. The percentages of the CXCR4-tropic virus in B (3.7%) and CRF01_AE (10.4%) infection are much higher than that of CRF07_BC (0.1%), which is supported by median false-positive rates (FPRs) of 69.8%, 25.5%, and 13.4% for CRF07_BC, B, and CRF01_AE respectively, with a cutoff FPR for CXCR4-tropic at 2%. In this study, we identified the first pure CXCR4-tropic virus from one CRF07_BC-infected patient with an extremely low CD4+T cell count (7 cells/mm3). Structural analysis found that the V3 region of this virus has the characteristic 7T and 25R and a substitution of conserved “GPGQ” crown motif for “GPGH”. This study provided compelling evidence that CRF07_BC has the ability to evolve into CXCR4 strains. Our study also lay down the groundwork for studies on tropism switch, which were commonly done for other HIV-1 subtypes, for the long-delayed CRF07_BC.
Collapse
Affiliation(s)
- Xiaoyan Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yueyang Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Abdur Rashid
- School of Medicine, Nankai University, Tianjin, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhua Ruan
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Lu
- School of Medicine, Nankai University, Tianjin, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Second People’s Hospital, Nankai University, Tianjin, China
- *Correspondence: Min Wei, ; Yiming Shao,
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Min Wei, ; Yiming Shao,
| |
Collapse
|
5
|
Boswell MT, Nazziwa J, Kuroki K, Palm A, Karlson S, Månsson F, Biague A, da Silva ZJ, Onyango CO, de Silva TI, Jaye A, Norrgren H, Medstrand P, Jansson M, Maenaka K, Rowland-Jones SL, Esbjörnsson J. Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS. Virus Evol 2022; 8:veac075. [PMID: 36533148 PMCID: PMC9753047 DOI: 10.1093/ve/veac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2023] Open
Abstract
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
| | - J Nazziwa
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - K Kuroki
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - A Palm
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - S Karlson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - F Månsson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - A Biague
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - Z J da Silva
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - C O Onyango
- US Centres for Disease Control, KEMRI Complex, Mbagathi Road off Mbagathi Way PO Box 606-00621, Kenya
| | - T I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Beech Hill Rd, S10 2RX, Sheffield, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - A Jaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - H Norrgren
- Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - P Medstrand
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - M Jansson
- Department of Laboratory Medicine, Lund University, Sölvegatan 19, Sweden
| | - K Maenaka
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - S L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - J Esbjörnsson
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| |
Collapse
|
6
|
Linheiro R, Sabatino S, Lobo D, Archer J. CView: A network based tool for enhanced alignment visualization. PLoS One 2022; 17:e0259726. [PMID: 35696379 PMCID: PMC9191720 DOI: 10.1371/journal.pone.0259726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
To date basic visualization of sequence alignments have largely focused on displaying per-site columns of nucleotide, or amino acid, residues along with associated frequency summarizations. The persistence of this tendency to the recent tools designed for viewing mapped read data indicates that such a perspective not only provides a reliable visualization of per-site alterations, but also offers implicit reassurance to the end-user in relation to data accessibility. However, the initial insight gained is limited, something that is especially true when viewing alignments consisting of many sequences representing differing factors such as location, date and subtype. A basic alignment viewer can have potential to increase initial insight through visual enhancement, whilst not delving into the realms of complex sequence analysis. We present CView, a visualizer that expands on the per-site representation of residues through the incorporation of a dynamic network that is based on the summarization of diversity present across different regions of the alignment. Within the network, nodes are based on the clustering of sequence fragments that span windows placed consecutively along the alignment. Edges are placed between nodes of neighbouring windows where they share sequence identification(s), i.e. different regions of the same sequence(s). Thus, if a node is selected on the network, then the relationship that sequences passing through that node have to other regions of diversity within the alignment can be observed through path tracing. In addition to augmenting visual insight, CView provides export features including variant summarization, per-site residue and kmer frequencies, consensus sequence, alignment dissection as well as clustering; each useful across a range of research areas. The software has been designed to be user friendly, intuitive and interactive. It is open source and an executable jar, source code, quick start, usage tutorial and test data are available (under the GNU General Public License) from https://sourceforge.net/projects/cview/.
Collapse
Affiliation(s)
- Raquel Linheiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
| | - Stephen Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- * E-mail:
| |
Collapse
|
7
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
High Detection Rate of HIV Drug Resistance Mutations among Patients Who Fail Combined Antiretroviral Therapy in Manaus, Brazil. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567332. [PMID: 34212033 PMCID: PMC8208851 DOI: 10.1155/2021/5567332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Virologic failure may occur because of poor treatment adherence and/or viral drug resistance mutations (DRM). In Brazil, the northern region exhibits the worst epidemiological scenarios for the human immunodeficiency virus (HIV). Thus, this study is aimed at investigating the genetic diversity of HIV-1 and DRM in Manaus. The cross-sectional study included people living with HIV on combined antiretroviral therapy and who had experienced virological failure during 2018-2019. Sequencing of the protease/reverse transcriptase (PR/RT) and C2V3 of the viral envelope gp120 (Env) regions was analyzed to determine subtypes/variants of HIV-1, DRMs, and tropism. Ninety-two individuals were analyzed in the study. Approximately 72% of them were male and 74% self-declared as heterosexual. Phylogenetic inference (PR/RT-Env) showed that most sequences were B subtype, followed by BF1 or BC mosaic genomes and few F1 and C sequences. Among the variants of subtype B at PR/RT, 84.3% were pandemic (BPAN), and 15.7% were Caribbean (BCAR). The DRMs most frequent were M184I/V (82.9%) for nucleoside reverse transcriptase inhibitors (NRTI), K103N/S (63.4%) for nonnucleoside reverse transcriptase inhibitor (NNRTI), and V82A/L/M (7.3%) for protease inhibitors (PI). DRM analysis depicted high levels of resistance for lamivudine and efavirenz in over 82.9% of individuals; although, low (7.7%) cross-resistance to etravirine was observed. A low level of resistance to protease inhibitors was found and included patients that take atazanavir/ritonavir (16.6%) and lopinavir (11.1%), which confirms that these antiretrovirals can be used—for most individuals. The thymidine analog mutations-2 (TAM-2) resistance pathway was higher in BCAR than in BPAN. Similar results from other Brazilian studies regarding HIV drug resistance were observed; however, we underscore a need for additional studies regarding subtype BCAR variants. Molecular epidemiology studies are an important tool for monitoring the prevalence of HIV drug resistance and can influence the public health policies.
Collapse
|
9
|
HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021; 13:v13050735. [PMID: 33922579 PMCID: PMC8146413 DOI: 10.3390/v13050735] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.
Collapse
|
10
|
Wang H, Li Y, Li Y, Li B, Zhu X, Yan D, Li M, Wu W, Sun M, Yang R. Variations in Env at amino acids 328 and 330 affect HIV-1 replicative fitness and entry inhibitor sensitivity. Virus Res 2021; 299:198424. [PMID: 33862046 DOI: 10.1016/j.virusres.2021.198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
While the variations in the HIV-1 Env V3 loop have been the focus of much research to explore its functional effect, how specific mutations of certain amino acids in the V3 loop affect viral fitness remains unclear. In this study, we evaluated a series of natural polymorphisms at positions 328 and 330 with different combinations of adjacent glycosylation sites in the HIV-1 subtype B backbone to address their role in replicative fitness and sensitivity to entry inhibitors based on analysis of env sequence frequency at the population level. Pairwise growth competition experiment showed that wild-type virus with major consensus amino acids obviously had higher replicative fitness (P < 0.001). A change at position 328 to a less frequently occurring amino acid, K, together with a mutated N332 glycosylation site harbored lower fitness and became more sensitive to coreceptor antagonists (AMD3100), fusion inhibitors (T20) and sCD4. A change at position 330 to a less frequently occurring amino acid, Y, together with a mutated N332 glycosylation site resulted in higher fitness and less sensitivity to entry inhibitors (T20, AMD3100, and sCD4), and viruses containing both changes showed intermediate activity. It seems that the H330Y mutation compensated for the reduced replicative capacity caused by the Q328 K mutation. Moreover, viruses that showed lower replicative fitness also exhibited slower entry kinetics, lower levels of replication intermediates and protein packaging, and a lower ability to replicate in primary peripheral blood mononuclear cells (PBMCs). The findings highlight the functional effect of variations at 328 and 330 in the V3 loop on replicative fitness and may benefit HIV-1 treatment by helping predict the sensitivity to entry inhibitors.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yang Li
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ya Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingxiang Li
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Dongshan Yan
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Mingyu Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wenying Wu
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Sun
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Rongge Yang
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
11
|
Matume ND, Tebit DM, Bessong PO. HIV-1 subtype C predicted co-receptor tropism in Africa: an individual sequence level meta-analysis. AIDS Res Ther 2020; 17:5. [PMID: 32033571 PMCID: PMC7006146 DOI: 10.1186/s12981-020-0263-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Entry inhibitors, such as Maraviroc, hold promise as components of HIV treatment and/or pre-exposure prophylaxis in Africa. Maraviroc inhibits the interaction between HIV Envelope gp120 V3-loop and CCR5 coreceptor. HIV-1 subtype C (HIV-1-C) is predominant in Southern Africa and preferably uses CCR5 co-receptor. Therefore, a significant proportion of HIV-1-C CXCR4 utilizing viruses (X4) may compromise the effectiveness of Maraviroc. This analysis examined coreceptor preferences in early and chronic HIV-1-C infections across Africa. Methods African HIV-1-C Envelope gp120 V3-loop sequences sampled from 1988 to 2014 were retrieved from Los Alamos HIV Sequence Database. Sequences from early infections (< 186 days post infection) and chronic infections (> 186 days post infection) were analysed for predicted co-receptor preferences using Geno2Pheno [Coreceptor] 10% FPR, Phenoseq-C, and PSSMsinsi web tools. V3-loop diversity was determined, and viral subtype was confirmed by phylogenetic analysis. National treatment guidelines across Africa were reviewed for Maraviroc recommendation. Results Sequences from early (n = 6316) and chronic (n = 7338) HIV-1-C infected individuals from 10 and 15 African countries respectively were available for analyses. Overall, 518/6316 (8.2%; 95% CI 0.7–9.3) of early sequences were X4, with Ethiopia and Malawi having more than 10% each. For chronic infections, 8.3% (95% CI 2.4–16.2) sequences were X4 viruses, with Ethiopia, Tanzania, and Zimbabwe having more than 10% each. For sequences from early chronic infections (< 1 year post infection), the prevalence of X4 viruses was 8.5% (95% CI 2.6–11.2). In late chronic infections (≥ 5 years post infection), X4 viruses were observed in 36% (95% CI − 16.3 to 49.9), with two countries having relatively high X4 viruses: South Africa (43%) and Malawi (24%). The V3-loop amino acid sequence were more variable in X4 viruses in chronic infections compared to acute infections, with South Africa, Ethiopia and Zimbabwe showing the highest levels of V3-loop diversity. All sequences were phylogenetically confirmed as HIV-1-C and clustered according to their co-receptor tropism. In Africa, Maraviroc is registered only in South Africa and Uganda. Conclusions Our analyses illustrate that X4 viruses are present in significantly similar proportions in early and early chronic HIV-1 subtype C infected individuals across Africa. In contrast, in late chronic infections, X4 viruses increase 3–5 folds. We can draw two inferences from our observations: (1) to enhance the utility of Maraviroc in chronic HIV subtype C infections in Africa, prior virus co-receptor determination is needed; (2) on the flip side, research on the efficacy of CXCR4 antagonists for HIV-1-C infections is encouraged. Currently, the use of Maraviroc is very limited in Africa.
Collapse
|
12
|
New Diagnostic Approaches to Viral Sexually Transmitted Infections. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019; 27:878-891. [PMID: 31262533 DOI: 10.1016/j.tim.2019.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022]
Abstract
HIV-1 envelope glycoprotein [Env; trimeric (gp160)3 cleaved to (gp120/gp41)3] attaches the virion to a susceptible cell and induces fusion of viral and cell membranes to initiate infection. It interacts with the primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4) to allow viral entry by triggering large structural rearrangements and unleashing the fusogenic potential of gp41 to induce membrane fusion. Recent advances in structural biology of HIV-1 Env and its complexes with the cellular receptors have revealed molecular details of HIV-1 entry and yielded new mechanistic insights. In this review, I summarize our latest understanding of the HIV-1 membrane fusion process and discuss possible pathways for productive viral entry.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Low-Bias RNA Sequencing of the HIV-2 Genome from Blood Plasma. J Virol 2018; 93:JVI.00677-18. [PMID: 30333167 PMCID: PMC6288329 DOI: 10.1128/jvi.00677-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
Accurate determination of the genetic diversity present in the HIV quasispecies is critical for the development of a preventative vaccine: in particular, little is known about viral genetic diversity for the second type of HIV, HIV-2. A better understanding of HIV-2 biology is relevant to the HIV vaccine field because a substantial proportion of infected people experience long-term viral control, and prior HIV-2 infection has been associated with slower HIV-1 disease progression in coinfected subjects. The majority of traditional and next-generation sequencing methods have relied on target amplification prior to sequencing, introducing biases that may obscure the true signals of diversity in the viral population. Additionally, target enrichment through PCR requires a priori sequence knowledge, which is lacking for HIV-2. Therefore, a target enrichment free method of library preparation would be valuable for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-infected individuals. Libraries generated from total plasma RNA were analyzed with a two-step pipeline: (i) de novo genome assembly, followed by (ii) read remapping. By this approach, whole-genome sequences were generated with a 28× to 67× mean depth of coverage. Assembled reads showed a low level of GC bias, and comparison of the genome diversities at the intrahost level showed low diversity in the accessory gene vpx in all patients. Our study demonstrates that RNA-Seq is a feasible full-genome de novo sequencing method for blood plasma samples collected from HIV-2-infected individuals.IMPORTANCE An accurate picture of viral genetic diversity is critical for the development of a globally effective HIV vaccine. However, sequencing strategies are often complicated by target enrichment prior to sequencing, introducing biases that can distort variant frequencies, which are not easily corrected for in downstream analyses. Additionally, detailed a priori sequence knowledge is needed to inform robust primer design when employing PCR amplification, a factor that is often lacking when working with tropical diseases localized in developing countries. Previous work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating the applicability of this technique to HIV-2 and allowing us to generate a dynamic picture of genetic diversity over the whole genome of HIV-2 in the context of low-bias sequencing.
Collapse
|
15
|
HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies. Sci Rep 2018; 8:8573. [PMID: 29872154 PMCID: PMC5988798 DOI: 10.1038/s41598-018-26894-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) is one of the major co-receptors for human immunodeficiency virus type 1 (HIV-1) entry and is considered an important therapeutic target. However, its function in maintaining the development of hematopoietic stem cells (HSC) makes it difficult to be used for HIV-1 gene therapy with HSC transplantation. A previous report showed that the natural CXCR4 P191A mutant inhibits HIV-1 infection without any defect in HSC differentiation, which could provide a basis for the development of new approaches for HIV-1 gene therapy. In the present study, we used CRISPR-Cas9 combined with the piggyBac transposon technologies to efficiently induce the expression of the CXCR4 P191A mutant in an HIV-1 reporter cell line, leading to no detectable exogenous sequences. In addition, no off-target effects were detected in the genome-edited cells. The decline of HIV-1 replication in biallelic CXCR4 gene-edited cells suggests that individuals equipped with homologous recombination of the CXCR4 P191A mutant could prevent or reduce HIV-1 infection. This study provides an effective approach to create a CXCR4 mutation with HIV-1 infection inhibition function and without leaving any genetic footprint inside cells, thereby shedding light on an application in HIV-1 gene therapy and avoiding side effects caused by deficiency or destruction of CXCR4 function.
Collapse
|
16
|
Protein structural disorder of the envelope V3 loop contributes to the switch in human immunodeficiency virus type 1 cell tropism. PLoS One 2017; 12:e0185790. [PMID: 29049306 PMCID: PMC5648111 DOI: 10.1371/journal.pone.0185790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope gp120 is partly an intrinsically disordered (unstructured/disordered) protein as it contains regions that do not fold into well-defined protein structures. These disordered regions play important roles in HIV’s life cycle, particularly, V3 loop-dependent cell entry, which determines how the virus uses two coreceptors on immune cells, the chemokine receptors CCR5 (R5), CXCR4 (X4) or both (R5X4 virus). Most infecting HIV-1 variants utilise CCR5, while a switch to CXCR4-use occurs in the majority of infections. Why does this ‘rewiring’ event occur in HIV-1 infected patients? As changes in the charge of the V3 loop are associated with this receptor switch and it has been suggested that charged residues promote structure disorder, we hypothesise that the intrinsic disorder of the V3 loop is permissive to sequence variation thus contributing to the switch in cell tropism. To test this we use three independent data sets of gp120 to analyse V3 loop disorder. We find that the V3 loop of X4 virus has significantly higher intrinsic disorder tendency than R5 and R5X4 virus, while R5X4 virus has the lowest. These results indicate that structural disorder plays an important role in HIV-1 cell tropism and CXCR4 binding. We discuss the potential evolutionary mechanisms leading to the fixation of disorder promoting mutations and the adaptive potential of protein structural disorder in viral host adaptation.
Collapse
|
17
|
Nedellec R, Herbeck JT, Hunt PW, Deeks SG, Mullins JI, Anton ED, Reeves JD, Mosier DE. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia. AIDS Res Hum Retroviruses 2017; 33:234-245. [PMID: 27604829 DOI: 10.1089/aid.2016.0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.
Collapse
Affiliation(s)
- Rebecca Nedellec
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| | - Joshua T. Herbeck
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, Washington
| | - Peter W. Hunt
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Elizabeth D. Anton
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Jacqueline D. Reeves
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Donald E. Mosier
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
18
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
19
|
Gasser R, Hamoudi M, Pellicciotta M, Zhou Z, Visdeloup C, Colin P, Braibant M, Lagane B, Negroni M. Buffering deleterious polymorphisms in highly constrained parts of HIV-1 envelope by flexible regions. Retrovirology 2016; 13:50. [PMID: 27473399 PMCID: PMC4967302 DOI: 10.1186/s12977-016-0285-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background Covariation is an essential process that leads to coevolution of parts of proteins and genomes. In organisms subject to strong selective pressure, coevolution is central to keep the balance between the opposite requirements of antigenic variation and retention of functionality. Being the viral component most exposed to the external environment, the HIV-1 glycoprotein gp120 constitutes the main target of the immune response. Accordingly its more external portions are characterised by extensive sequence heterogeneity fostering constant antigenic variation. Results We report that a single polymorphism, present at the level of the viral population in the conserved internal region C2, was sufficient to totally abolish Env functionality when introduced in an exogenous genetic context. The prominent defect of the non-functional protein is a block occurring after recognition of the co-receptor CCR5, likely due to an interference with the subsequent conformational changes that lead to membrane fusion. We also report that the presence of compensatory polymorphisms at the level of the external and hypervariable region V3 fully restored the functionality of the protein. The functional revertant presents different antigenic profiles and sensitivity to the entry inhibitor TAK 779. Conclusions Our data suggest that variable regions, besides harbouring intrinsic extensive antigenic diversity, can also contribute to sequence diversification in more structurally constrained parts of the gp120 by buffering the deleterious effect of polymorphisms, further increasing the genetic flexibility of the protein and the antigenic repertoire of the viral population.
Collapse
Affiliation(s)
- Romain Gasser
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Meriem Hamoudi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.,U1016, UMR 8104, INSERM-CNRS, Institut Cochin, Université Paris Descartes, Paris, France
| | - Martina Pellicciotta
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Zhicheng Zhou
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Philippe Colin
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Bernard Lagane
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Matteo Negroni
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.
| |
Collapse
|
20
|
The evolution of HIV-1 interactions with coreceptors and mannose C-type lectin receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:109-40. [PMID: 25595802 DOI: 10.1016/bs.pmbts.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of human immunodeficiency virus type 1 (HIV-1) commonly evolves between and within infected individuals, at virus transmission, and during disease progression. This evolution includes altered interactions between the virus and its coreceptors, i.e., chemokine receptors, as well as mannose C-type lectin receptors (CLRs). Transmitted/founder viruses are predominantly restricted to CCR5, whereas the subsequent intrapatient evolution of HIV-1 coreceptor use during progressive disease can be subdivided into two distinct pathways. Accordingly, the CCR5-restricted virus population is either gradually replaced by virus variants able to use CXCR4 or evolves toward an altered, more flexible use of CCR5. Despite a strong dependency on these coreceptors for host cell entry, HIV-1 also interacts with other cell surface molecules during target cell attachment, including the CLRs. The virus interaction with the CLRs may result either in the efficient transfer of virus to CD4(+) T cells or in the degradation of the virus in endosomal compartments. The determinants of the diverse outcomes depend on which CLR is engaged and also on the glycan makeup of the envelope glycoproteins, which may evolve with the strength of the immune pressure during the disease course. With the current clinical introduction of CCR5 antagonists and the development of additional entry inhibitors, knowledge on the evolution and baseline characteristics of HIV-1 interactions with coreceptor and CLR interactions may play important roles for individualized and optimized treatment strategies. This review summarizes our current understanding of the evolution of HIV-1 interactions with these receptors.
Collapse
|
21
|
Arruda LB, Araújo MLD, Martinez ML, Gonsalez CR, Duarte AJDS, Coakley E, Lie Y, Casseb J. Determination of viral tropism by genotyping and phenotyping assays in Brazilian HIV-1-infected patients. Rev Inst Med Trop Sao Paulo 2014; 56:287-90. [PMID: 25076427 PMCID: PMC4131812 DOI: 10.1590/s0036-46652014000400003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 01/30/2014] [Indexed: 12/03/2022] Open
Abstract
The clinical application of CCR5 antagonists involves first determining
the coreceptor usage by the infecting viral strain. Bioinformatics programs that
predict coreceptor usage could provide an alternative method to screen candidates for
treatment with CCR5 antagonists, particularly in countries with limited financial
resources. Thus, the present study aims to identify the best approach using
bioinformatics tools for determining HIV-1 coreceptor usage in clinical practice.
Proviral DNA sequences and Trofile results from 99 HIV-1-infected subjects under
clinical monitoring were analyzed in this study. Based on the Trofile results, the
viral variants present were 81.1% R5, 21.4% R5X4 and 1.8% X4. Determination of
tropism using a Geno2pheno[coreceptor] analysis with a false positive rate
of 10% gave the most suitable performance in this sampling: the R5 and X4 strains
were found at frequencies of 78.5% and 28.4%, respectively, and there was 78.6%
concordance between the phenotypic and genotypic results. Further studies are needed
to clarify how genetic diversity amongst virus strains affects bioinformatics-driven
approaches for determining tropism. Although this strategy could be useful for
screening patients in developing countries, some limitations remain that restrict the
wider application of coreceptor usage tests in clinical practice.
Collapse
Affiliation(s)
- Liã Bárbara Arruda
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Marilia Ladeira de Araújo
- Laboratory of Investigation in Dermatology and Immunodeficiencies, Department of Dermatology School of Medicine at University of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Maira Luccia Martinez
- Laboratory of Investigation in Dermatology and Immunodeficiencies, Department of Dermatology School of Medicine at University of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Claudio Roberto Gonsalez
- HIV Out-clinic, Ambulatory of Secondary Immunodeficiencies, ADEE3002, Department of Dermatology, Hospital of Clinics at School of Medicine, University of São Paulo
| | - Alberto José da Silva Duarte
- Laboratory of Investigation in Dermatology and Immunodeficiencies, Department of Dermatology School of Medicine at University of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Eoin Coakley
- Monogram Biosciences, Inc., South San Francisco, CA, USA
| | - Yolanda Lie
- Monogram Biosciences, Inc., South San Francisco, CA, USA
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Bon I, Turriziani O, Musumeci G, Clò A, Montagna C, Morini S, Calza L, Gibellini D, Antonelli G, Re MC. HIV-1 coreceptor usage in paired plasma RNA and proviral DNA from patients with acute and chronic infection never treated with antiretroviral therapy. J Med Virol 2014; 87:315-22. [PMID: 25138591 DOI: 10.1002/jmv.24036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/28/2023]
Abstract
Although an independent evolution of viral quasispecies in different body sites might determine a differential compartmentalization of viral variants, the aim of this paper was to establish whether sequences from peripheral blood mononuclear cells (PBMCs) and plasma provide different or complementary information on HIV tropism in patients with acute or chronic infection. Tropism was predicted using genotypic testing combined with geno2pheno (coreceptor) analysis at a 10% false positive rate in paired RNA and DNA samples from 75 antiretroviral-naïve patients (divided on the basis of avidity index into patients with a recent or long-lasting infection). A high prevalence of R5 HIV strains (97%) was observed in both compartments (plasma and PBMCs) in patients infected recently. By contrast, patients with a long-lasting infection showed a quite different situation in the two compartments, revealing more (46%) X4/DM in PBMCs than patients infected recently (3%) (P = 0.008). As- a knowledge of viral strains in different biological compartments might be crucial to establish a therapeutic protocol, it could be extremely useful to detect not only viral strains in plasma, but also viruses hidden or archived in different cell compartments to better understand disease evolution and treatment efficacy in patients infected with HIV.
Collapse
Affiliation(s)
- I Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ransy DG, Motorina A, Merindol N, Akouamba BS, Samson J, Lie Y, Napolitano LA, Lapointe N, Boucher M, Soudeyns H. Evolution of HIV-1 coreceptor usage and coreceptor switching during pregnancy. AIDS Res Hum Retroviruses 2014; 30:312-24. [PMID: 24090041 DOI: 10.1089/aid.2013.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4(+) T cell counts <200 cells/mm(3), and the presence of X4-capable virus was confirmed using a recombinant phenotypic assay in four of seven cases where testing was successful. In five of nine X4 subjects, a statistically significant decline in the geno2pheno false-positive rate was observed during the course of pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host-pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child.
Collapse
Affiliation(s)
- Doris G. Ransy
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alena Motorina
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Natacha Merindol
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bertine S. Akouamba
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Johanne Samson
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Yolanda Lie
- Monogram Biosciences Inc., South San Francisco, California
| | | | - Normand Lapointe
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Boucher
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Soudeyns
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Mortier V, Dauwe K, Vancoillie L, Staelens D, Van Wanzeele F, Vogelaers D, Vandekerckhove L, Chalmet K, Verhofstede C. Frequency and predictors of HIV-1 co-receptor switch in treatment naive patients. PLoS One 2013; 8:e80259. [PMID: 24244665 PMCID: PMC3820624 DOI: 10.1371/journal.pone.0080259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023] Open
Abstract
Background Determination of HIV-1 co-receptor use is a necessity before initiation of a CCR5 antagonist but the longevity of a CCR5-use prediction remains unknown. Methods Genotypic co-receptor tropism determination was performed in 225 newly diagnosed individuals consulting an AIDS Reference Centre. Samples were collected at diagnosis and at initiation of antiretroviral therapy or just before closure of the study for patients who did not initiate therapy. For individuals with a discordant tropism prediction on the two longitudinal samples, analysis of intermediate samples and single genome sequencing of proviral DNA was performed to confirm the tropism switch. Deep sequencing was done to identify minor CXCR4 or CCR5-using populations in the initial sample. Results Overall, tropism switches were rare (7.6%). Only a geno2pheno false positive rate of <50% at baseline was retained as predictive for a subsequent switch from CCR5-use only to predicted CXCR4-use. Minor CXCR4-using virus populations were detected in the first sample of 9 of the 14 R5-to-X4 switchers but the subsequent outgrowth of these minor populations was documented in only 3. Conclusions With the current guidelines for treatment initiation at CD4+ T cell counts of <500 cells/mm3, co-receptor switch between diagnosis and starting antiretroviral therapy is rare. Patients with R5 viruses and a geno2pheno FPR of <50% are more prone to subsequent co-receptor switch than patients with an FPR of >50% and will need repeat tropism testing if initiation of maraviroc is considered and previous testing dates from more than a year before.
Collapse
Affiliation(s)
- Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Leen Vancoillie
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Filip Van Wanzeele
- Aids Reference Center, Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Gent, Belgium
| | - Dirk Vogelaers
- Aids Reference Center, Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Gent, Belgium
| | - Linos Vandekerckhove
- Aids Reference Center, Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Gent, Belgium
| | - Kristen Chalmet
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
25
|
Abstract
Over the past three decades of intense research on the contribution of viral and host factors determining the variability in HIV-1 infection outcome, HIV pathogenesis is still a fascinating topic that requires further study. An understanding of the exact mechanism of how these factors influencing HIV pathogenesis is critical to the development of effective strategies to prevent infection. Significant progress has been made in identifying the role of CCR5 (R5) and CXCR4 (X4) HIV strains in disease progression, particularly with the persistence of R5 HIV-1 strains at the AIDS stage. This indicates that R5 strains are as fit as X4 in causing CD4+ T cell depletion and in contribution to disease outcome, and so questions the prerequisite of the shift from R5 to X4 for disease progression. In contrast, the ability of certain HIV strains to readily use CXCR4 for infection or entry into macrophages, as the case with viruses are homozygous for tropism by CCR5delta32. This raises another major paradox in HIV pathogenesis about the source of X4 variants and how do they emerge from a relatively homogeneous R5 viral population after transmission. The interactions between viral phenotypes, tropism and co-receptor usage and how they influence HIV pathogenesis are the main themes addressed in this review. A better understanding of the viral and host genetic factors involved in the fitness of X4 and R5 strains of HIV-1 may facilitate development of specific inhibitors against these viral populations to at least reduce the risk of disease progression.
Collapse
Affiliation(s)
- Hassan M Naif
- Molecular Virology Program, Medical Biotechnology, Al-Nahrain University , Baghdad, Iraq
| |
Collapse
|
26
|
Mild M, Gray RR, Kvist A, Lemey P, Goodenow MM, Fenyö EM, Albert J, Salemi M, Esbjörnsson J, Medstrand P. High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch. INFECTION GENETICS AND EVOLUTION 2013; 19:369-77. [PMID: 23672855 DOI: 10.1016/j.meegid.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Abstract
In approximately 70% of individuals infected with HIV-1 subtype B, the virus switches coreceptor use from exclusively CCR5 use (R5 virus) to either inclusion of or exclusively CXCR4 use (X4 virus) during infection. This switch is associated with an accelerated loss of CD4(+) T-cells and a faster progression to AIDS. Despite intensive research, the mechanisms responsible for coreceptor switch remains elusive. In the present study, we investigated associations between viral evolutionary rate and selection pressure versus viral coreceptor use and rate of disease progression in eight patients with longitudinally sampled HIV-1 env V1-V3 sequences. By employing a Bayesian hierarchical phylogenetic model, we found that the HIV-1 evolutionary rate was more strongly associated with coreceptor switch than with rate of disease progression in terms of CD4(+)T-cell decline. Phylogenetic analyses showed that X4 variants evolved from R5 populations. In addition, coreceptor switch was associated with higher evolutionary rates on both the synonymous and non-synonymous substitution level, but not with dN/dS ratio rates. Our findings suggest that X4 viruses evolved from pre-existing R5 viral populations and that the evolution of coreceptor switch is governed by high replication rates rather than by selective pressure. Furthermore, the association of viral evolutionary rate was more strongly associated with coreceptor switch than disease progression. This adds to the understanding of the complex virus-host interplay that influences the evolutionary dynamics of HIV-1 coreceptor use.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cardeal da Silva D, Casseb J, Mirzazadeh A, Arruda LB, Rutherford GW. Is the rate of CD4 cell decline changing over time in antiretroviral-naïve patients? AIDS Patient Care STDS 2013; 27:69-70. [PMID: 23298278 DOI: 10.1089/apc.2012.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daniela Cardeal da Silva
- Institute of Tropical Medicine of Sao Paulo, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
- HIV Outpatient Clinic, Ambulatory of Secondary Immunodeficiencies, Department of Dermatology, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
- Global Health Sciences, University of California, San Francisco, California
| | - Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Investigation in Dermatology and Immunodeficiencies, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
- HIV Outpatient Clinic, Ambulatory of Secondary Immunodeficiencies, Department of Dermatology, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
| | - Ali Mirzazadeh
- Global Health Sciences, University of California, San Francisco, California
| | - Liã B. Arruda
- Institute of Tropical Medicine of Sao Paulo, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Investigation in Dermatology and Immunodeficiencies, Hospital of Clinics at School of Medicine at University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
28
|
Rozera G, Abbate I, Ciccozzi M, Presti AL, Bruselles A, Vlassi C, D'Offizi G, Narciso P, Giombini E, Bartolini B, Ippolito G, Capobianchi MR. Ultra-deep sequencing reveals hidden HIV-1 minority lineages and shifts of viral population between the main cellular reservoirs of the infection after therapy interruption. J Med Virol 2012; 84:839-44. [DOI: 10.1002/jmv.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Trabaud MA, Icard V, Scholtes C, Perpoint T, Koffi J, Cotte L, Makhloufi D, Tardy JC, André P. Discordance in HIV-1 co-receptor use prediction by different genotypic algorithms and phenotype assay: intermediate profile in relation to concordant predictions. J Med Virol 2012; 84:402-13. [PMID: 22246825 DOI: 10.1002/jmv.23209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Concordant and discordant genotypic predictions of HIV-1 co-receptor tropism were analyzed. V3 region was sequenced from plasma samples of patients screened for R5 tropism by the Trofile® assay, before CCR5 antagonist prescription. Ten tools including geno2pheno, PSSM, an "11/25" and "net charge" rule, and other published algorithms were used. Patients were grouped according to concordance or discordance between tools and Trofile® result. Trofile® tropism reports from 50 patient samples were R5 in 38 and Dual/Mixed (DM) in 12. Prediction with the genotypic tools were concordant for 23 R5 samples, and discordant for the 15 other ones. From Trofile® DM strains were concordant in 6 and discordant in 6. V3 sequences were not clearly distinct between R5 and DM strains, except a greater diversity in the later. Discordances were found with any tool or combination of them, so that no one can be proposed as better than the others. Predictive values of each algorithm were similar and rather good (efficacy ranged from 74% to 84%), but the rate of non-confirmed prediction is greater when compelling the results of all tools with each individual sample. The mean of quantitative values obtained with one tool when another tool give the opposite prediction were different from those obtained when all tools agree with that prediction. The two discordant groups were often not distinguishable from each other. These results suggest that viruses giving discordant prediction with bioinformatic tools could be functionally distinct and/or in a different evolutionary state compared to those with concordant prediction.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratory of Virology, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fenyö EM, Esbjörnsson J, Medstrand P, Jansson M. Human immunodeficiency virus type 1 biological variation and coreceptor use: from concept to clinical significance. J Intern Med 2011; 270:520-31. [PMID: 21929694 DOI: 10.1111/j.1365-2796.2011.02455.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is ample evidence for intra-patient evolution of the human immunodeficiency virus type 1 (HIV-1) biological phenotype during the pathogenic process. Evolution often involves switch of coreceptor use from CCR5 to CXCR4, but change to more flexible use of CCR5 occurs over time even in patients with maintained CCR5 use. The increasing use of entry inhibitors in the clinic, often specific for one or the other HIV-1 coreceptor or with different binding properties to CCR5, calls for virus testing in patients prior to treatment initiation. Cell lines expressing CCR5/CXCR4 chimeric receptors are tools for testing viruses for mode of CCR5 use. It is conceivable that small-molecule entry inhibitors that differentially bind to CCR5 can be matched for best effect against HIV-1 with different modes of CCR5 use, thereby allowing an individualized drug choice specifically tailored for each patient.
Collapse
Affiliation(s)
- E M Fenyö
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund, Sweden.
| | | | | | | |
Collapse
|
31
|
Impact of mutations outside the V3 region on coreceptor tropism phenotypically assessed in patients infected with HIV-1 subtype B. Antimicrob Agents Chemother 2011; 55:5078-84. [PMID: 21876051 DOI: 10.1128/aac.00743-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV coreceptor tropism (CTR) testing is a prerequisite for prescribing a coreceptor antagonist. CTR is increasingly deduced by analyzing the V3 loop sequence of gp120. We investigated the impact of mutations outside V3 on CTR as determined by the enhanced-sensitivity Trofile assay (ESTA). Paired ESTA and gp120 sequencing (population sequencing; from codon 32 of the conserved C1 to the variable V5 domains) were obtained from 60 antiretroviral treatment (ART)-naïve patients (15 with AIDS) infected with subtype B HIV-1. For gp120 sequence analysis, nucleotide mixtures were considered when the second highest electropherogram peak was >25%; sequences were translated into all possible permutations and classified as X4, dual/mixed (DM), and R5 based on coincident ESTA results. ESTA identified R5 and DM viruses in 72 and 28% of patients, respectively; no pure X4 was labeled. Forty percent of AIDS patients had R5 strains. Thirty-two positions, mostly outside V3, were significantly (P < 0.05) different between R5 and DM sequences. According to multivariate analysis, amino acid changes at 9 and 7 positions within the C1 to C4 and V1 to V5 regions, respectively, maintained a statistical significance, as did the net charge of V3 and C4. When analyzing only R5 sequences, 6 positions in the variable regions were found which, along with the V4 net charge, were significantly different for sequences from early- and end-stage disease patients. This study identifies specific amino acid changes outside V3 which contribute to CTR. Extending the analysis to include pure X4 and increasing the sample size would be desirable to define gp120 variables/changes which should be included in predictive algorithms.
Collapse
|
32
|
Jiao Y, Wang P, Zhang H, Zhang T, Zhang Y, Zhu H, Wu H. HIV-1 Co-Receptor Usage Based on V3 Loop Sequence Analysis: Preferential Suppression of CXCR4 Virus Post HAART? Immunol Invest 2011; 40:597-613. [DOI: 10.3109/08820139.2011.569673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|