1
|
Martins NB, de Almeida JCN, Gonçalves MSS, Gila LI, Yogui DR, Alves MH, Desbiez ALJ, Brandão PE, da Hora AS. Occurrence of Typical Domestic Animal Viruses in Wild Carnivorans: An Emerging Threat to the Conservation of Endangered Species. Transbound Emerg Dis 2024; 2024:3931047. [PMID: 40303121 PMCID: PMC12016978 DOI: 10.1155/2024/3931047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 05/02/2025]
Abstract
Wild species are susceptible to several typical domestic animal pathogens, and the increasingly close contact between these groups is a predictive factor for disease exposure. Some viruses are important and old-known, and others are emerging or reemerging for domestic carnivorans and have been identified as threats to the conservation of wild mammals. The purpose of the study was to investigate the occurrence of bocaparvoviruses (BoVs, Parvoviridae family, Parvovirinae subfamily, Bocaparvovirus genus), parvoviruses (Parvoviridae family, Parvovirinae subfamily, Protoparvovirus genus, Protoparvovirus carnivoran1), hepadnaviruses (Hepadnaviridae family), coronaviruses (Coronaviridae family, Orthocoronavirinae subfamily), paramyxoviruses (Paramyxoviridae family) and canine distemper virus (Orthoparamyxovirinae subfamily, Morbillivirus genus, Morbillivirus canis), poxviruses (Poxviridae family), feline herpesvirus (Orthoherpesviridae family, Alphaherpesvirinae subfamily, Varicellovirus genus, Varicellovirus felidalpha1), feline calicivirus (Caliciviridae family, Vesivirus genus, FCV), feline immunodeficiency virus (Retroviridae family, Orthoretrovirinae subfamily, Lentivirus genus, FIV), feline leukemia virus (Retroviridae family, Orthoretrovirinae subfamily, Gammaretrovirus genus, FeLV), and gammaherpesviruses (Orthoherpesviridae family, Gammaherpesvirinae subfamily) in wild carnivorans. A total of 30 biological samples from the families Canidae, Felidae, Mephitidae, Mustelidae, and Procyonidae were evaluated. All animals were victims of vehicular collisions in the state of Mato Grosso do Sul, Brazil. Canine parvovirus (CPV-2) DNA was detected in the spleen of a bush dog (Speothos venaticus), a jaguarundi (Puma yagouaroundi), and a jaguar (Panthera onca), FeLV proviral DNA was found in the spleen of an ocelot (Leopardus pardalis); while CDV RNA was detected in the liver of a jaguarundi. Phylogenetic analysis carried out with the partial sequence of the CPV-2 VP2 gene and the U3 (LTR) gag region of FeLV showed 100% identity with strains obtained from domestic dogs and cats, respectively. The approximation between wild and domestic animals favors the transmission of pathogens, especially between phylogenetically close species, such as members of the Canidae and Felidae families. Identification of the DNA and RNA of potentially fatal viruses such as CPV-2, FeLV, and CDV in four wilds endangered to extinction and understudied species contributes to our understanding of the pathogens circulating in this free-ranging and vulnerable population.
Collapse
Affiliation(s)
- Nathana B. Martins
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Julio C. Neves de Almeida
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Marianne S. S. Gonçalves
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Lana I. Gila
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Débora R. Yogui
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Postgraduate Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Mato Grosso do Sul 79070-900, Campo Grande, Brazil
- Nashville Zoo, Nashville 37211, TN, USA
| | - Mario H. Alves
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Postgraduate Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Mato Grosso do Sul 79070-900, Campo Grande, Brazil
| | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Royal Zoological Society of Scotland (RZSS), Murrayfield, Edinburgh EH12 6TS, UK
| | - Paulo E. Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05339-003, Brazil
| | - Aline S. da Hora
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| |
Collapse
|
2
|
Cocker ATH, Liu F, Djaoud Z, Guethlein LA, Parham P. CD56-negative NK cells: Frequency in peripheral blood, expansion during HIV-1 infection, functional capacity, and KIR expression. Front Immunol 2022; 13:992723. [PMID: 36211403 PMCID: PMC9539804 DOI: 10.3389/fimmu.2022.992723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated markers expands during chronic viral infections such as HIV-1 and HCV, and, to lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been understudied because it requires the exclusion of other lymphocytes to accurately identify its presence. Many questions remain regarding the origin, development, phenotype, and function of the CD56neg NK cell population. Our objective was to determine the frequency of this NK subset in healthy controls and its alteration in viral infections by performing a meta-analysis. In addition to this, we analyzed deposited CyTOF and scRNAseq datasets to define the phenotype and subsets of the CD56neg NK cell population, as well as their functional variation. We found in 757 individuals, from a combined 28 studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in healthy peripheral blood, while HIV-1 infection increases this population by a mean difference of 10.69%. Meta-analysis of surface marker expression between NK subsets showed no evidence of increased exhaustion or decreased proliferation within the CD56neg subset. CD56neg NK cells have a distinctive pattern of KIR expression, implying they have a unique potential for KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg population exhibited different gene expression and degranulation responses against K562 cells compared to other CD56neg cells. This analysis distinguishes two functionally distinct subsets of CD56neg NK cells. They are phenotypically diverse and have differing capacity for education by HLA class-I interactions with KIRs.
Collapse
Affiliation(s)
- Alexander T. H. Cocker
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Alexander T. H. Cocker,
| | - Fuguo Liu
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Laboratory Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, Lai S, Sun X, Geng Y, Zhu L. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Front Immunol 2022; 13:931885. [PMID: 35844623 PMCID: PMC9284214 DOI: 10.3389/fimmu.2022.931885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Herpesviruses belong to large double-stranded DNA viruses. They are under a wide range of hosts and establish lifelong infection, which creates a burden on human health and animal health. Innate immunity is the host’s innate defense ability. Activating the innate immune signaling pathway and producing type I interferon is the host’s first line of defense against infectious pathogens. Emerging evidence indicates that the cGAS-STING signaling pathway plays an important role in the innate immunity in response to herpesvirus infections. In parallel, because of the constant selective pressure imposed by host immunity, herpesvirus also evolves to target the cGAS-STING signaling pathway to inhibit or escape the innate immune responses. In the current review, we insight on the classical cGAS-STING signaling pathway. We describe the activation of cGAS-STING signaling pathway during herpesvirus infections and strategies of herpesvirus targeting this pathway to evade host antiviral response. Furthermore, we outline the immunotherapy boosting cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ling Zhu,
| |
Collapse
|
4
|
Lee N, Steitz JA. Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism? Bioessays 2015; 37:936-41. [PMID: 26200477 PMCID: PMC4721591 DOI: 10.1002/bies.201500060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
High-fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity of their target loci. However, a well-documented example of such a mechanism was lacking until we recently reported that a ncRNA made by Epstein-Barr virus uses an RNA-RNA interaction with nascent transcripts generated from the viral genome to facilitate the recruitment of an interacting TF, PAX5, to viral DNA. This proof-of-principle finding suggests that cellular ncRNAs may likewise function in guiding interacting TFs to chromatin target sites.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
6
|
Coen N, Duraffour S, Snoeck R, Andrei G. KSHV targeted therapy: an update on inhibitors of viral lytic replication. Viruses 2014; 6:4731-59. [PMID: 25421895 PMCID: PMC4246246 DOI: 10.3390/v6114731] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing.
Collapse
Affiliation(s)
- Natacha Coen
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Sophie Duraffour
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
African great apes are naturally infected with roseoloviruses closely related to human herpesvirus 7. J Virol 2014; 88:13212-20. [PMID: 25187544 DOI: 10.1128/jvi.01490-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Primates are naturally infected with herpesviruses. During the last 15 years, the search for homologues of human herpesviruses in nonhuman primates allowed the identification of numerous viruses belonging to the different herpesvirus subfamilies and genera. No simian homologue of human herpesvirus 7 (HHV7) has been reported to date. To investigate the putative existence of HHV7-like viruses in African great apes, we applied the consensus-degenerate hybrid oligonucleotide primers (CODEHOP) program-mediated PCR strategy to blood DNA samples from the four common chimpanzee subspecies (Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii), pygmy chimpanzees (Pan paniscus), as well as lowland gorillas (Gorilla gorilla gorilla). This study led to the discovery of a novel roseolovirus close to HHV7 in each of these nonhuman primate species and subspecies. Generation of the partial glycoprotein B (1,111-bp) and full-length DNA polymerase (3,036/3,042-bp) gene sequences allowed the deciphering of their evolutionary relationships. Phylogenetic analyses revealed that HHV7 and its African great ape homologues formed well-supported monophyletic lineages whose topological resemblance to the host phylogeny is suggestive of virus-host codivergence. Notably, the evolutionary branching points that separate HHV7 from African great ape herpesvirus 7 are remarkably congruent with the dates of divergence of their hosts. Our study shows that African great apes are hosts of human herpesvirus homologues, including HHV7 homologues, and that the latter, like other DNA viruses that establish persistent infections, have cospeciated with their hosts. IMPORTANCE Human herpesviruses are known to possess simian homologues. However, surprisingly, none has been identified to date for human herpesvirus 7 (HHV7). This study is the first to describe simian homologues of HHV7. The extensive search performed on almost all African great ape species and subspecies, i.e., common chimpanzees of the four subspecies, bonobos, and lowland gorillas, has allowed characterization of a specific virus in each. Genetic characterization of the partial glycoprotein B and full-length DNA polymerase gene sequences, followed by their phylogenetic analysis and estimation of divergence times, has shed light on the evolutionary relationships of these viruses. In this respect, we conclusively demonstrate the cospeciation between these new viruses and their hosts and report cases of cross-species transmission between two common chimpanzee subspecies in both directions.
Collapse
|
8
|
Induction of encephalitis in rhesus monkeys infused with lymphocryptovirus-infected B-cells presenting MOG(34-56) peptide. PLoS One 2013; 8:e71549. [PMID: 23977076 PMCID: PMC3744571 DOI: 10.1371/journal.pone.0071549] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The overlapping epidemiology of multiple sclerosis (MS) and Epstein-Barr virus (EBV), the increased risk to develop MS after infectious mononucleosis (IM) and the localization of EBV-infected B-cells within the MS brain suggest a causal link between EBV and MS. However, the underlying mechanism is unknown. We hypothesize that EBV-infected B-cells are capable of eliciting a central nervous system (CNS) targeting autoimmune reaction. To test this hypothesis we have developed a novel experimental model in rhesus monkeys of IM-like disease induced by infusing autologous B-lymphoblastoid cells (B-LCL). Herpesvirus papio (HVP) is a lymphocryptovirus related to EBV and was used to generate rhesus monkey B-LCL. Three groups of five animals were included; each group received three intravenous infusions of B-LCL that were either pulsed with the encephalitogenic self peptide MOG34–56 (group A), a mimicry peptide (981–1003) of the major capsid protein of cytomegalovirus (CMVmcp981–1003; group B) or the citrullinated MOG34–56 (cMOG34–56; group C). Groups A and B received on day 98 a single immunization with MOG34–56 in incomplete Freund’s adjuvant (IFA). Group C monkeys were euthanized just prior to day 98 without booster immunization. We observed self-peptide-specific proliferation of T-cells, superimposed on similar strong proliferation of CD3+CD8+ T-cells against the B-LCL as observed in IM. The brains of several monkeys contained perivascular inflammatory lesions of variable size, comprising CD3+ and CD68+ cells. Moreover, clusters of CD3+ and CD20+ cells were detected in the meninges. The only evident clinical sign was substantial loss of bodyweight (>15%), a symptom observed both in early autoimmune encephalitis and IM. In conclusion, this model suggests that EBV-induced B-LCL can elicit a CNS targeting inflammatory (auto)immune reaction.
Collapse
|
9
|
Jens W, Mager-Melicharek CAX, Rietkerk FE. Free-ranging New World primates in zoos: cebids at Apenheul. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1748-1090.2012.00166.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. Jens
- Apenheul Primate Park; J.C.Wilslaan 31; 7313 HK; Apeldoorn; the Netherlands
| | | | - F. E. Rietkerk
- Apenheul Primate Park; J.C.Wilslaan 31; 7313 HK; Apeldoorn; the Netherlands
| |
Collapse
|
10
|
Abstract
Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important, and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence.
Collapse
Affiliation(s)
- Claudia S Plottel
- Department of Medicine, New York University Langone Medical Center, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
11
|
|
12
|
Lavergne A, de Thoisy B, Pouliquen JF, Ruiz-García M, Lacoste V. Partial molecular characterisation of New World non-human primate lymphocryptoviruses. INFECTION GENETICS AND EVOLUTION 2011; 11:1782-9. [PMID: 21827873 DOI: 10.1016/j.meegid.2011.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/26/2022]
Abstract
The description of numerous viruses belonging to the Lymphocryptovirus genus from different Old and New World non-human primate species during the past 10 years has led to developing and supporting co-speciational evolution hypotheses for these viruses and their hosts. Among the different primate species tested, only a few were from the New World. This study attempted to achieve a better understanding of the evolutionary processes within the Platyrrhini branch. Molecular screening of 253 blood DNA samples from 20 New World non-human primate species from Central and South America was carried out using polymerase chain reaction amplification with degenerate consensus primers targeting highly conserved amino acid motifs of the herpesvirus DNA polymerase gene. In addition to the 33 samples from which we have already described three lymphocryptoviruses, amplification products were detected in 17 other samples originating from 11 species (13 sub-species). BLAST searches, pairwise nucleotide and amino acid sequence comparisons, and phylogenetic analyses confirm that they all belong to the Lymphocryptovirus genus. Fourteen distinct Lymphocryptovirus sequences were detected, of which nine have never been reported. Phylogenetic analyses showed that, as expected, the New World virus lineage formed a sister clade to that of the Old World viruses. The parallel determination of the host taxa has demonstrated a good correlation between the distinct monophyletic clades of viruses and the infected primates at the sub-family level. In addition, these results further suggest the existence of two distinct groups within the Cebidae for Saimirinae and Cebinae primates. Nevertheless, based on the current genetic data, this study fell short of achieving a tree that was completely resolved within the lineage of Platyrrhini viruses. Further studies will be needed to better assess the evolutionary relationships between these viruses.
Collapse
Affiliation(s)
- Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP6010, 97306 Cayenne Cedex, French Guiana
| | | | | | | | | |
Collapse
|
13
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
14
|
Gessain A, Rose TM, Lavergne A, Lacoste V. Comment on Mugisha et al. J Med Primatol 2010; 39: 71-76. J Med Primatol 2010; 39:363-4; author reply 365-6. [PMID: 20444000 DOI: 10.1111/j.1600-0684.2010.00421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|