1
|
Xie Y, Du X, Li D, Wang X, Xu C, Zhang C, Sun A, Schmidt S, Liu X. Seasonal occurrence and abundance of norovirus in pre- and postharvest lettuce samples in Nanjing, China. Lebensm Wiss Technol 2021; 152:112226. [DOI: 10.1016/j.lwt.2021.112226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Norovirus waterborne outbreak in Chalkidiki, Greece, 2015: detection of GI.P2_GI.2 and GII.P16_GII.13 unusual strains. Epidemiol Infect 2020; 147:e227. [PMID: 31364530 PMCID: PMC6625189 DOI: 10.1017/s0950268819000852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noroviruses, along with rotaviruses, are among the leading causes of gastroenteritis worldwide and novel strains are periodically emerging. In August 2015, an unusual increase of gastroenteritis cases occurred in a touristic district in Kassandra peninsula, Chalkidiki, Northern Greece. Seven stool specimens from cases were tested positive for norovirus. Molecular investigation and phylogenetic analysis identified that there was co-circulation of norovirus GI.P2_GI.2 and the recombinant strain GII.P16_GII.13. A 1:1 case–control study conducted and showed that tap water consumption significantly associated with developing symptoms of gastroenteritis (odds ratio = 36.9, P = 0.018). The results of the epidemiological investigation, the co-circulation of two different norovirus strains, the information of a pipeline breakage at the water supply system before the onset of cases, and reports on flooded wells and sewage overflow, indicated the possibility of water contamination by sewage during the pipeline breakage leading to a large outbreak with a peak at 10 August and a possible secondary person-to-person transmission after the 16th of August. Norovirus GI.P2_GI.2 strains are rarely reported in Europe, while it is the first time that infection from the recombinant strain GII.P16_GII.13 is recorded in Greece.
Collapse
|
3
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
4
|
Cardemil CV, Parashar UD, Hall AJ. Norovirus Infection in Older Adults: Epidemiology, Risk Factors, and Opportunities for Prevention and Control. Infect Dis Clin North Am 2017; 31:839-870. [PMID: 28911830 PMCID: PMC6546097 DOI: 10.1016/j.idc.2017.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Norovirus is the leading cause of acute gastroenteritis. In older adults, it is responsible for an estimated 3.7 million illnesses; 320,000 outpatient visits; 69,000 emergency department visits; 39,000 hospitalizations; and 960 deaths annually in the United States. Older adults are particularly at risk for severe outcomes, including prolonged symptoms and death. Long-term care facilities and hospitals are the most common settings for norovirus outbreaks in developed countries. Diagnostic platforms are expanding. Several norovirus vaccines in clinical trials have the potential to reap benefits. This review summarizes current knowledge on norovirus infection in older adults.
Collapse
Affiliation(s)
- Cristina V Cardemil
- Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Umesh D Parashar
- Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aron J Hall
- Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
5
|
Kabue JP, Meader E, Hunter PR, Potgieter N. Genetic characterisation of Norovirus strains in outpatient children from rural communities of Vhembe district/South Africa, 2014-2015. J Clin Virol 2017; 94:100-106. [PMID: 28783578 DOI: 10.1016/j.jcv.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/24/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Norovirus (NoV) is now the most common cause of both outbreaks and sporadic non-bacterial gastroenteritis worldwide. However, data supporting the role of NoV in diarrheal disease are limited in the African continent. OBJECTIVES This study investigates the distribution of NoV genotypes circulating in outpatient children from rural communities of Vhembe district/South Africa. STUDY DESIGN Stool specimens were collected from children under five years of age with diarrhea, and controls without diarrhea, between July 2014 and April 2015. NoV-positive samples, detected previously by Realtime PCR, were analysed using conventional RT-PCR targeting the partial capsid and polymerase genes. Nucleotide sequencing methods were performed to genotype the strains. RESULTS The sequence analyses demonstrated multiple NoV genotypes including GI.4 (13.8%), GI.5 (6.9%), GII.14 (6.9%), GII.4 (31%), GII.6 (3.4%), GII.P15 (3.4%), GII.P21 (3.4%) and GII.Pe (31%). The most prevalent NoV genotypes were GII.4 Sydney 2012 variants (n=7) among the capsid genotypes, GII.Pe (n=9) among the polymerase genotypes and GII.Pe/GII.4 Sydney 2012 (n=8) putative recombinants among the RdRp/Capsid genotypes. Two unassigned GII.4 variants were found. CONCLUSIONS The findings highlighted NoV genetic diversity and revealed continuous pandemic spread and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An unusual RdRp genotype GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe district/South Africa. NoV surveillance is warranted to help to inform investigations into NoV evolution and disease burden, and to support on-going vaccine development programmes.
Collapse
Affiliation(s)
- Jean Pierre Kabue
- Department of Microbiology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.
| | - Emma Meader
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK
| | - Paul R Hunter
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK; Department of Environmental Health, Tshwane University of Technology, Pretoria, South Africa
| | - Natasha Potgieter
- Department of Microbiology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa; Dean, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
6
|
Zhang SX, Yang CL, Gu WP, Ai L, Serrano E, Yang P, Zhou X, Li SZ, Lv S, Dang ZS, Chen JH, Hu W, Tian LG, Chen JX, Zhou XN. Case-control study of diarrheal disease etiology in individuals over 5 years in southwest China. Gut Pathog 2016; 8:58. [PMID: 27891182 PMCID: PMC5112671 DOI: 10.1186/s13099-016-0141-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/05/2016] [Indexed: 12/31/2022] Open
Abstract
Background Acute diarrhea is one of the major public health problems worldwide. Most of studies on acute diarrhea have been made on infants aged below 5 years and few efforts have been made to identify the etiological agents of acute diarrhea in people over five, especially in China. Methods 271 diarrhea cases and 149 healthy controls over 5 years were recruited from four participating hospitals between June 2014 and July 2015. Each stool specimen was collected to detect a series of enteric pathogens, involving five viruses (Rotavirus group A, RVA; Norovirus, NoV; Sapovirus, SaV; Astrovirus, As; and Adenovirus, Ad), seven bacteria (diarrheagenic Escherichia coli, DEC; non-typhoidal Salmonella, NTS; Shigella spp.; Vibrio cholera; Vibrio parahaemolyticus; Aeromonas spp.; and Plesiomonas spp.) and three protozoa (Cryptosporidium spp., Giardia lamblia, G. lamblia, and Blastocystis hominis, B. hominis). Standard microbiological and molecular methods were applied to detect these pathogens. Data was analyzed using Chi square, Fisher-exact tests and logistic regressions. Results The prevalence of at least one enteric pathogen was detected in 29.2% (79/271) acute diarrhea cases and in 12.1% (18/149) in healthy controls (p < 0.0001). Enteric viral infections (14.4%) were the most common in patients suffering from acute diarrhea, followed by bacteria (13.7%) and intestinal protozoa (4.8%). DEC (12.5%) was the most common causative agent in diarrhea cases, followed by NoV GII (10.0%), RVA (7.4%) and B. hominis (4.8%). The prevalence of co-infection was statistically higher (p = 0.0059) in the case group (7.7%) than in the healthy control (1.3%). RVA–NoV GII (3.0%) was the most common co-infection in symptomatic cases. Conclusions DEC was the most predominant pathogen in diarrhea cases, but it was largely overlooked because the lack of laboratory capacities. Because of the high prevalence of co-infections, it is recommended the urgent development of alternative laboratory methods to assess polymicrobial infections. Such methodological improvements will result in a better prevention and treatment strategies to control diarrhea illness in China. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0141-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shun-Xian Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Chun-Li Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Wen-Peng Gu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, 650022 People's Republic of China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Emmanuel Serrano
- Center for Environmental and Marine Studies (CESAM), Departamento de Biología, Universidade de Aveiro, Aveiro, Portugal.,Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Pin Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Xia Zhou
- Department of parasitology, College of Medicine, Soochow University, Suzhou, 215123 People's Republic of China
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Zhi-Sheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Li-Guang Tian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 People's Republic of China.,Key Laboratory for Parasitology and Vector Biology, MOH of China, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 20025 People's Republic of China
| |
Collapse
|
7
|
Jin M, Zhou YK, Xie HP, Fu JG, He YQ, Zhang S, Jing HB, Kong XY, Sun XM, Li HY, Zhang Q, Li K, Zhang YJ, Zhou DQ, Xing WJ, Liao QH, Liu N, Yu HJ, Jiang X, Tan M, Duan ZJ. Characterization of the new GII.17 norovirus variant that emerged recently as the predominant strain in China. J Gen Virol 2016; 97:2620-2632. [PMID: 27543110 DOI: 10.1099/jgv.0.000582] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human noroviruses are the most important viral pathogens causing epidemic acute gastroenteritis, in which the GII.4 viruses have been predominant worldwide for the past decades. During 2014-2015 winter season, a new GII.17 variant emerged as the predominant virus in China surpassing the GII.4 virus in causing significantly increased acute gastroenteritis outbreaks. Genome sequences of the new GII.17 variant was determined and compared with other GII.17 noroviruses, revealing residue substitutions at specific locations, including the histo-blood group antigen-binding site and the putative antigenic epitopes. Further study of GII.17 outbreaks focusing on host susceptibility showed that the new GII.17 variant infected secretor individuals of A, B, O and Lewis types. Accordingly, the P particles of the new GII.17 variant bound secretor saliva samples of A, B, O and Lewis types with significantly higher binding signals than those of the P particles of the previous GII.17 variants. In addition, human sera collected from the outbreaks exhibited stronger blockade against the binding of the new GII.17 P particles to saliva samples than those against the binding between the P particles of previous GII.17 variants and saliva samples. Taken together, our data strongly suggested that the new GII.17 variant gained new histo-blood group antigen-binding ability and antigenic features, which may contribute to its predominance in causing human norovirus epidemics.
Collapse
Affiliation(s)
- Miao Jin
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yong-Kang Zhou
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Hua-Ping Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong Province, PR China
| | - Jian-Guang Fu
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, PR China
| | - Ya-Qing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong Province, PR China
| | - Shuang Zhang
- Beijing Shunyi Center for Disease Control and Prevention, Shunyi District, Beijing, PR China
| | - Hong-Bo Jing
- Beijing Shunyi Center for Disease Control and Prevention, Shunyi District, Beijing, PR China
| | - Xiang-Yu Kong
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xiao-Man Sun
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Hui-Ying Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qing Zhang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Kai Li
- Guangzhou Huadu Center for Disease Control and Prevention, Huadu District, Guangzhou, Guangdong Province, PR China
| | - Ying-Jun Zhang
- Guangzhou Huadu Center for Disease Control and Prevention, Huadu District, Guangzhou, Guangdong Province, PR China
| | - De-Qian Zhou
- Guangzhou Yuexiu Center for Disease Control and Prevention, Yuexiu District, Guangzhou, Guangdong Province, PR China
| | - Wei-Jia Xing
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qiao-Hong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Na Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Hong-Jie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xi Jiang
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhao-Jun Duan
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
8
|
Phumpholsup T, Chieochansin T, Vongpunsawad S, Vuthitanachot V, Payungporn S, Poovorawan Y. Human norovirus genogroup II recombinants in Thailand, 2009-2014. Arch Virol 2015; 160:2603-2609. [PMID: 26215446 DOI: 10.1007/s00705-015-2545-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
Abstract
Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis worldwide. New strains emerge partly due to viral recombination. In Thailand, there is a lack of data on NoV recombinants among clinical isolates. We screened stool samples from pediatric diarrheal patients for norovirus by RT-PCR and found GII.4 to be the most prevalent genotype. Phylogenetic and SimPlot analyses detected seven intra-genogroup recombinant strains: three GII.21/GII.3, two GII.12/GII.3, and two GII.12/GII.1 recombinants. Maximum chi-square analysis indicated that all had similar breakpoints near the ORF1/ORF2 junction (p < 0.001), either slightly upstream within the C-terminus of RdRp or downstream within the N-terminal domain of VP1.
Collapse
Affiliation(s)
- Tikumporn Phumpholsup
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaweesak Chieochansin
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Wu X, Han J, Chen L, Xu D, Shen Y, Zha Y, Zhu X, Ji L. Prevalence and genetic diversity of noroviruses in adults with acute gastroenteritis in Huzhou, China, 2013-2014. Arch Virol 2015; 160:1705-13. [PMID: 25951970 PMCID: PMC4464852 DOI: 10.1007/s00705-015-2440-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/25/2015] [Indexed: 01/10/2023]
Abstract
Norovirus (NoV) infection is the most common cause of nonbacterial acute gastroenteritis, which affects both adults and children. However, the molecular epidemiology of NoV in adults with acute gastroenteritis in China has not been investigated extensively. In this study, we investigated the occurrence of NoV infections and analyzed the genetic diversity of NoV in adults with acute gastroenteritis in Huzhou, China. A total of 796 fecal samples were collected from outpatients (≥16 years of age) between March 2013 and February 2014. Real-time RT-PCR was performed to detect NoV genogroups I (GI) and II (GII). For genotyping, the capsid and RNA-dependent RNA polymerase (RdRp) genes were partially amplified and sequenced for phylogenetic analysis. NoVs were detected in 26.51 % (211/796) of the specimens, with GII being predominant, representing 96.20 % of the NoV infections. At least nine genotypes were identified among GI and GII specimens, including GI.P2/GI.2, GI.P3/GI.3, GI.P4/GI.4, GII.Pe/GII.4 Sydney_2012, GII.P12/GII.3, GII.P7/GII.6, GII.P16/GII.13, GII.Pe, and GII.Pg (RdRp only). This is the first report of a GII.P16/GII.13 recombinant virus in adults in China. GII.Pe/GII.4 Sydney_2012 was the most prevalent genotype and the only GII.4 variant identified during the study period. Our findings suggested that NoV was a common causative agent of acute gastroenteritis in adults in Huzhou, China. During the study period, the NoVs circulating in adults in Huzhou were predominantly GII.4 Sydney_2012 variants and GII NoV recombinants.
Collapse
Affiliation(s)
- Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Noroviruses associated with outbreaks of acute gastroenteritis in the State of Rio Grande do Sul, Brazil, 2004-2011. J Clin Virol 2014; 61:345-52. [PMID: 25223919 DOI: 10.1016/j.jcv.2014.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute gastroenteritis norovirus (NoV) in a country of continental dimensions like Brazil has resulted in under-reporting of the number of outbreaks, as well as the genotypes associated. OBJECTIVES To demonstrate the role of NoV in outbreaks occurring in the State of Rio Grande do Sul, Southern Brazil, we determined its prevalence, as well as the genotypes associated, and evaluated clinical and epidemiological aspects. STUDY DESIGN NoV investigation was carried out in rotavirus group A negative stool samples from 2265 patients from 741 outbreaks that occurred in the State of Rio Grande do Sul, Brazil, during a period of eight years (2004-2011). NoV detection and nucleotide sequencing for genotype characterization was carried by using sets of primers targeting a conservative Rd-Rp polymerase genome region and the viral capsid gene, respectively. RESULTS NoVs were detected in 817 stool samples (36.1%) and associated with 327 outbreaks (44.1%). NoV GII.2, GII.3, GII.4, GII.6, GII.12, GII.13, GII.14, GII.15, GII.17, GII.21; and GI.1 and GI.3 were characterized. GII.4 was the most frequently detected (72.3%), with five variants identified (Asia_2003, Hunter_2004, Yerseke_2006a, Den_Haag_2006b, New Orleans_2009). This study describes the first detection of GI.1 and GII.13 and GII.15 in Brazil and demonstrates NoV winter-spring seasonality in this region of the country. CONCLUSIONS NoVs were responsible for almost 50% of outbreaks, with about 70% of them resulting from genotype GII.4 and its variants. The seasonality observed could help health authorities to establish a system of active surveillance in order to reduce NoV impact especially in congregate settings.
Collapse
|
11
|
Novel recombinant GII.P16_GII.13 and GII.P16_GII.3 norovirus strains in Italy. Virus Res 2014; 188:142-5. [DOI: 10.1016/j.virusres.2014.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
|
12
|
Tian G, Jin M, Li H, Li Q, Wang J, Duan ZJ. Clinical characteristics and genetic diversity of noroviruses in adults with acute gastroenteritis in Beijing, China in 2008-2009. J Med Virol 2014; 86:1235-42. [PMID: 24523136 DOI: 10.1002/jmv.23802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/26/2022]
Abstract
Norovirus (NoV) infections that cause acute gastroenteritis are commonly observed during colder months. This study was conducted to investigate the clinical features and molecular epidemiology of NoVs in adult outpatients with acute gastroenteritis in Beijing, China from August 2008 to July 2009. Five hundred nineteen patients were enrolled, their stool specimens were collected, and 136 (26.2%) were positive for NoV. The elderly were found to be more susceptible to NoVs than other age groups. The greatest number of gastroenteritis cases associated with occurred in October. Six GI and eleven GII NoV genotypes were isolated; among these, the GII.4 genotype was most prevalent (70/140 and 50% were the 2006b variant). The elderly were more susceptible to the GII.4 genotype than to other genotypes. Greater numbers of neutrophils in the peripheral blood were observed in the NoV infected group than in uninfected control group. However, the levels of neutrophils and leukocytes in the non-GII.4 patients infected with NoV were higher than those of the GII.4-infected patients. The data highlight the role of NoV as a primary agent responsible for gastroenteritis in adults in Beijing, China.
Collapse
Affiliation(s)
- Geng Tian
- Infectious Diseases Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
13
|
Nahar S, Afrad MH, Matthijnssens J, Rahman MZ, Momtaz Z, Yasmin R, Jubair M, Faruque ASG, Choudhuri MSK, Azim T, Rahman M. Novel intergenotype human norovirus recombinant GII.16/GII.3 in Bangladesh. INFECTION GENETICS AND EVOLUTION 2013; 20:325-9. [PMID: 24080167 DOI: 10.1016/j.meegid.2013.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/15/2022]
Abstract
Noroviruses (NoVs) are one of the major etiological agents of acute gastroenteritis in all age groups. In this study, we identified an intergenotype NoV recombinant strain in the fecal specimens of two male infants with acute diarrhea in Bangladesh. Phylogenetic analysis showed that the identified strains were recombinant NoV strains with a GII.3 capsid and a GII.16 polymerase gene. The recombination breakpoint was located in the ORF1/ORF2 overlap region. To the best of our knowledge this is the first report of a NoV recombinant GII.16/GII.3 strain worldwide.
Collapse
Affiliation(s)
- Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ahmed AI, Bissett SL, Beddows S. Amino acid sequence diversity of the major human papillomavirus capsid protein: implications for current and next generation vaccines. INFECTION GENETICS AND EVOLUTION 2013; 18:151-9. [PMID: 23722024 PMCID: PMC3769806 DOI: 10.1016/j.meegid.2013.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 01/05/2023]
Abstract
We evaluated amino acid diversity of the major capsid protein of HPV. Residues displaying high entropy were found within surface-exposed domains. We discuss the implications of this diversity on the current and next generation HPV vaccines.
Despite the fidelity of host cell polymerases, the human papillomavirus (HPV) displays a degree of genomic polymorphism resulting in distinct genotypes and intra-type variants. The current HPV vaccines target the most prevalent genotypes associated with cervical cancer (HPV16/18) and genital warts (HPV6/11). Although these vaccines confer some measure of cross-protection, a multivalent HPV vaccine is in the pipeline that aims to broaden vaccine protection against other cervical cancer-associated genotypes including HPV31, HPV33, HPV45, HPV52 and HPV58. Both current and next generation vaccines comprise virus-like particles, based upon the major capsid protein, L1, and vaccine-induced, type-specific protection is likely mediated by neutralizing antibodies targeting L1 surface-exposed domains. The aim of this study was to perform an in silico analysis of existing full length L1 sequences representing vaccine-relevant HPV genotypes in order to address the degree of naturally-occurring, intra-type polymorphisms. In total, 1281 sequences from the Americas, Africa, Asia and Europe were assembled. Intra-type entropy was low and/or limited to non-surface-exposed residues for HPV6, HPV11 and HPV52 suggesting a minimal effect on vaccine antibodies for these genotypes. For HPV16, intra-type entropy was high but the present analysis did not reveal any significant polymorphisms not previously identified. For HPV31, HPV33, HPV58, however, intra-type entropy was high, mostly mapped to surface-exposed domains and in some cases within known neutralizing antibody epitopes. For HPV18 and HPV45 there were too few sequences for a definitive analysis, but HPV45 displayed some degree of surface-exposed residue diversity. In most cases, the reference sequence for each genotype represented a minority variant and the consensus L1 sequences for HPV18, HPV31, HPV45 and HPV58 did not reflect the L1 sequence of the currently available HPV pseudoviruses. These data highlight a number of variant amino acid residues that warrant further investigation for vaccine and natural history studies of HPV.
Collapse
Affiliation(s)
- Amina I Ahmed
- Virus Reference Department, Public Health England, London, UK
| | | | | |
Collapse
|