1
|
Sun X, Guo J, Shen J, Guan M, Liu L, Xie Y, Xu H, Wang M, Ren A, Li W, Cong F, Li X. Genetics and biological characteristics of duck reoviruses isolated from ducks and geese in China. Vet Res 2025; 56:30. [PMID: 39915856 PMCID: PMC11803967 DOI: 10.1186/s13567-025-01470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
The emergence and circulation of duck reovirus have caused severe threats to domestic waterfowl production because of the lethal infections they cause in ducks and geese. However, the evolution of circulating duck reoviruses and their replication and pathogenicity in domestic birds have not been fully investigated. In this study, we identified and isolated six duck reoviruses from clinical samples of sick or deceased farmed ducks and geese and sequenced their full genomes. Phylogenetic analysis revealed the evolutionary landscape of duck reoviruses and the complex reassortment of these circulating viruses with avian orthoreovirus and Muscovy duck reovirus. Animal infection studies revealed differences in the replication and pathogenicity of the reoviruses identified in this study in ducks, geese and chickens. Lethal infection with highly pathogenic viruses causes severe focal necrosis and hemorrhage in the liver, spleen, bursa of Fabricius and thymus, resulting in high mortality in inoculated birds. Importantly, chickens are susceptible to circulating duck reovirus, highlighting the potential risk of duck reovirus infection in chickens. Our study revealed the evolution, pathogenicity and potential cross-species transmission risk of duck reoviruses, further emphasizing the importance of continued and systemic surveillance at the interface of domestic waterfowl and chickens.
Collapse
Affiliation(s)
- Xiaohong Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jing Guo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jinyan Shen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Mengdi Guan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lili Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yujiao Xie
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hongke Xu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Mengjing Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Anran Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Wenxi Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| | - Xuyong Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
| |
Collapse
|
2
|
Wang Y, Xu S, Chen X, Dou Y, Yang X, Hu Z, Wu S, Wang X, Hu J, Liu X. Single dose of recombinant baculovirus vaccine expressing sigma B and sigma C genes provides good protection against novel duck reovirus challenge in ducks. Poult Sci 2025; 104:104565. [PMID: 39631275 PMCID: PMC11652866 DOI: 10.1016/j.psj.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The novel duck reovirus (NDRV) disease causes high economic losses, resulting in substantial economic losses in waterfowl industry. However, currently, no commercial vaccines are available to alleviate NDRV infection throughout the world. Here, we developed two subunit vaccine candidates for NDRV based on the insect cell-baculovirus expression system (IC-BEVS). Two recombinant viruses, namely rBac-σB and rBac-σC, were successfully generated based on the consensus sequence of NDRV. Then, the σB and σC subunit vaccine candidates were prepared by directly inactivating the recombinant virus infected-Sf9 cell suspension. The double antibody-sandwich ELISA was used for quantitative of σB or σC protein in the inactivated crude antigen. Protective efficacy results revealed that, compared with the whole virus inactivated vaccine, a single dose of 160 ng σB or σC protein showed advantages in inducing serum antibodies, elevating weight, alleviating liver and spleen injury, restraining viral shedding and viral replication in ducklings. To be noted, the subunit σC or the combination of subunit σB and σC vaccine candidates had better protective efficacies, especially the combined σB and σC vaccine group. Therefore, our study provides useful information for developing effective vaccine against NDRV infection.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyi Xu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Dou
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingzhu Yang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Wang C, Liu H, Cheng J, Pan S, Yang W, Wei X, Cheng Y, Xu T, Si H. One-Step Multiplex Real-Time Fluorescent Quantitative Reverse Transcription PCR for Simultaneous Detection of Four Waterfowl Viruses. Microorganisms 2024; 12:2423. [PMID: 39770626 PMCID: PMC11679685 DOI: 10.3390/microorganisms12122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG). The limit of detection (LOD) established for DTMUV, DHV, MDRV, and MDPV was determined to be 27 copies/μL. In the repeatability test, the intra-assay and inter-assay coefficients of variation (CVs) of the recombinant plasmid standard were less than 2%. Utilizing this method, we analyzed 326 clinical specimens sourced from Guangxi over the period spanning October 2021 through December 2023, yielding promising and precise outcomes. The qRT-PCR method established herein exhibits commendable specificity, sensitivity, and repeatability. Furthermore, it boasts a high clinical detection rate, making it a highly effective tool for diagnosing these pathogenic agents in waterfowl.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China; (C.W.); (H.L.); (J.C.); (S.P.); (W.Y.); (X.W.); (Y.C.); (T.X.)
| |
Collapse
|
4
|
Xu Z, Liu H, Zheng X, Cheng X, Wang S, You G, Zhu X, Zheng M, Dong H, Xiao S, Zeng L, Zeng X, Chen S, Chen S. Simultaneous detection and differentiation of classical Muscovy duck reovirus and goose-origin Muscovy duck reovirus by RT-qPCR assay with high-resolution melting analysis. Front Vet Sci 2024; 11:1459898. [PMID: 39512916 PMCID: PMC11541953 DOI: 10.3389/fvets.2024.1459898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Classical Muscovy duck reovirus (C-MDRV) and goose-origin Muscovy duck reovirus (Go-MDRV) infections cause "Liver white-spots disease" in Muscovy duckling and gosling. It is difficult to differentiate the infections caused by C-MDRV and Go-MDRV using conventional serological methods. Methods Specific primers were designed and synthesized according to σNS and λA nucleotide sequences of C-MDRV and Go-MDRV, respectively. The PCR amplified products were cloned into the pMD-18-T vector. The recombinant plasmid DNA was used to establish an SYBR Green І based duplex real-time PCR assay for the simultaneous detection and differentiation of C-MDRV and Go-MDRV using high-resolution melting (HRM) analysis. The specificity, sensitivity, and repeatability of the methodology were examined based on the optimization of the reaction system and amplification conditions. Results C-MDRV and Go-MDRV were identified by their distinctive melting temperatures with 84.50 ± 0.25°C for C-MDRV and 87.50 ± 0.20°C for Go-MDRV, respectively. The amplifications were specific, and other non-targeted waterfowl viruses employed in this study did not show normalized melting peaks. The intra- and inter-assay coefficients of variations were between 0.05 and 1.83%, demonstrating good repeatability. The detection limits of this assay were 51.4 copies·μl-1 for C-MDRV and 61.8 copies·μl-1 for Go-MDRV, respectively. A total of 45 clinical samples were tested by RT-qPCR, with positive rates of 15.56% for C-MDRV and 22.22% for Go-MDRV, without co-infections. Discussion These results suggest that this duplex RT-qPCR method is highly sensitive, specific, and reproducible. The HRM assay established in this study provides a powerful tool for the differential detection and epidemiological investigation of C-MDRV and Go-MDRV.
Collapse
Affiliation(s)
- Zhuoran Xu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongwei Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zheng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Guangju You
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Hui Dong
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Li Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiancheng Zeng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| |
Collapse
|
5
|
Chen Y, Yan Z, Liao C, Song Y, Zhou Q, Shen H, Chen F. Recombinant linear multiple epitopes of σB protein protect Muscovy ducks against novel duck reovirus infection. Front Vet Sci 2024; 11:1360246. [PMID: 38803800 PMCID: PMC11129634 DOI: 10.3389/fvets.2024.1360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024] Open
Abstract
Infection by the novel duck reovirus (NDRV) in ducklings causes high mortality, which leads to substantial economic losses in the duck industry in China. To date, no commercial vaccine is available for this disease. In this study, linear B cell epitopes of the σB protein of the NDRV were predicted and recombinant multiple linear B cell epitopes (MLBEs) were constructed through linkers. The recombinant MLBEs were then expressed and purified. One-day-old Muscovy ducklings were immunized with different doses of MLBEs and challenged with 5 × 104 ELD50 of the virulent CHY strain of NDRV 14 days after immunization. The ducklings vaccinated with 20 and 40 μg of MLBE performed no clinical signs or gross or histopathological lesions, indicating 100% protection against infection. The viral load in the liver and spleens of these birds was significantly lower than that in the control group. Additionally, these ducklings exhibited positive seroconversion at 7 days after vaccination on enzyme-linked immunosorbent assay. These results indicate that MLBE of σB could be used as a candidate for developing vaccines against NDRV infection.
Collapse
Affiliation(s)
- Yiquan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Changtao Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Yiwei Song
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Qi Zhou
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Hanqin Shen
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Zhang X, Chen G, Liu R, Guo J, Mei K, Qin L, Li Z, Yuan S, Huang S, Wen F. Identification, pathological, and genomic characterization of novel goose reovirus associated with liver necrosis in geese, China. Poult Sci 2024; 103:103269. [PMID: 38064883 PMCID: PMC10749903 DOI: 10.1016/j.psj.2023.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Since 2021, a novel strain of goose reovirus (GRV) has emerged within the goose farming industry in Guangdong province, China. This particular viral variant is distinguished by the presence of white necrotic foci primarily localized in the liver and spleen, leading to substantial economic losses for the poultry industry. However, the etiology, prevalence and genomic characteristics of the causative agent have not been thoroughly investigated. In this study, we conducted an epidemiological inquiry employing suspected GRV samples collected from May 2021 to September 2022. The macroscopic pathological and histopathological lesions associated with GRV-infected clinical specimens were examined. Moreover, we successfully isolated the GRV strain and elucidated the complete genome sequence of the isolate GD21/88. Through phylogenetic and recombination analysis, we unveiled that the GRV strains represent a novel variant resulting from multiple reassortment events. Specifically, the μNS, λC, and σNS genes of GRV were found to have originated from chicken reovirus, while the σA gene of GRV exhibited a higher degree of similarity with a novel duck reovirus. The remaining genes of GRV were traced back to Muscovy duck reovirus. Collectively, our findings underscore the significance of GRV as a pathogenic agent impacting the goose farming industry. The insights gleaned from this study contribute to a more comprehensive understanding of the epidemiology of GRV in Southern China and shed light on the genetic reassortment events exhibited by the virus.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Runzhi Liu
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Limei Qin
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China; Guangdong Huasheng Biotechnology Co., Ltd,Guangzhou 511300, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China.
| |
Collapse
|
7
|
Peng Z, Zhang H, Zhang X, Wang H, Liu Z, Qiao H, Lv Y, Bian C. Identification and molecular characterization of novel duck reoviruses in Henan Province, China. Front Vet Sci 2023; 10:1137967. [PMID: 37065255 PMCID: PMC10098080 DOI: 10.3389/fvets.2023.1137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haiyan Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zihan Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Chuanzhou Bian
| |
Collapse
|
8
|
Yang H, Zhang W, Wang M, Yuan S, Zhang X, Wen F, Guo J, Mei K, Huang S, Li Z. Characterization and pathogenicity evaluation of recombinant novel duck reovirus isolated from Southeast China. Front Vet Sci 2023; 10:1124999. [PMID: 36998638 PMCID: PMC10043381 DOI: 10.3389/fvets.2023.1124999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The novel duck reovirus (NDRV) emerged in southeast China in 2005. The virus causes severe liver and spleen hemorrhage and necrosis in various duck species, bringing serious harm to waterfowl farming. In this study, three strains of NDRV designated as NDRV-ZSS-FJ20, NDRV-LRS-GD20, and NDRV-FJ19 were isolated from diseased Muscovy ducks in Guangdong and Fujian provinces. Pairwise sequence comparisons revealed that the three strains were closely related to NDRV, with nucleotide sequence identities for 10 genomic fragments ranging between 84.8 and 99.8%. In contrast, the nucleotide sequences of the three strains were only 38.9–80.9% similar to the chicken-origin reovirus and only 37.6–98.9% similar to the classical waterfowl-origin reovirus. Similarly, phylogenetic analysis revealed that the three strains clustered together with NDRV and were significantly different from classical waterfowl-origin reovirus and chicken-origin reovirus. In addition, the analyses showed that the L1 segment of the NDRV-FJ19 strain was a recombinant of 03G and J18 strains. Experimental reproduction of the disease showed that the NDRV-FJ19 strain was pathogenic to both ducks and chickens and could lead to symptoms of hemorrhage and necrosis in the liver and spleen. This was somewhat different from previous reports that NDRV is less pathogenic to chickens. In conclusion, we speculated that the NDRV-FJ19 causing duck liver and spleen necrosis is a new variant of a duck orthoreovirus that is significantly different in pathogenicity from any previously reported waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Huihu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wandi Zhang
- Nanyang Vocational College of Agriculture, Nanyang, China
| | - Meihong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xuelian Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- *Correspondence: Shujian Huang
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Zhili Li
| |
Collapse
|
9
|
Yin YW, Xiong C, Shi KC, Xie SY, Long F, Li J, Zheng M, Wei XK, Feng S, Qu S, Lu W, Zhou H, Zhao K, Sun W, Li Z. Development and application of a multiplex qPCR assay for the detection of duck circovirus, duck Tembusu virus, Muscovy duck reovirus, and new duck reovirus. Virus Genes 2023; 59:91-99. [PMID: 36258144 DOI: 10.1007/s11262-022-01946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 01/13/2023]
Abstract
A multiplex qPCR assay was developed to simultaneously detect duck circovirus (DuCV), duck Tembusu virus (DTMUV), Muscovy duck reovirus (MDRV), and novel duck reovirus (NDRV), but it did not amplify other viruses, including duck virus enteritis (DVE), infectious bursal disease virus (IBDV), avian reovirus (ARV), H5 avian influenza virus (H5 AIV), H7 avian influenza virus (H7 AIV), H9 avian influenza virus (H9 AIV), Newcastle disease virus (NDV), and Muscovy duck parvovirus (MDPV), and the detection limit for DuCV, DTMUV, MDRV, and NDRV was 1.51 × 101 copies/μL. The intra- and interassay coefficients of variation were less than 1.54% in the repeatability test with standard plasmid concentrations of 1.51 × 107, 1.51 × 105, and 1.51 × 103 copies/μL. The developed multiple qPCR assay was used to examine 404 clinical samples to verify its practicability. The positivity rates for DuCV, DTMUV, MDRV, and NDRV were 26.0%, 9.9%, 4.0%, and 4.7%, respectively, and the mixed infection rates for DuCV + DTMUV, DuCV + MDRV, DuCV + NDRV, MDRV + NDRV, DTMUV + MDRV, and DTMUV + NDRV were 2.7%, 1.2%, 1.2%, 1.0%, 0.5%, and 0.7%, respectively.
Collapse
Affiliation(s)
- Yan Wen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kai Chuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Shou Yu Xie
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Jun Li
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Xian Kai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongjin Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
10
|
Yun T, Hua J, Ye W, Chen L, Ni Z, Zhu Y, Zhang C. Development and Evaluation of a Monoclonal Antibody-Based Blocking Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies against Novel Duck Reovirus in Waterfowl Species. Microbiol Spectr 2022; 10:e0258122. [PMID: 36445088 PMCID: PMC9769907 DOI: 10.1128/spectrum.02581-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
The novel duck reovirus (NDRV) is an emerging pathogen that causes disease in various waterfowl species. Since the outbreak, it has caused huge economic losses to the duck industry in China. A rapid, reliable, and high-throughput method is required for epidemiological investigation and evaluation of vaccine immunogenicity. A good first step would be establishing an enzyme-linked immunosorbent assay (ELISA) that could detect NDRV antibodies in different breeds of ducks and geese from the serum and egg yolk. This study used a recombinant NDRV σB protein and a corresponding horseradish peroxidase (HRP)-labeled monoclonal antibody to develop a blocking ELISA (B-ELISA). The cutoff value of the B-ELISA was 37.01%. A total of 212 serum samples were tested by the B-ELISA, and the virus neutralization test (VNT) was the gold standard test. The sensitivity and specificity of the B-ELISA were 92.17% (106/115) and 97.94% (95/97), respectively. The agreement rates between the B-ELISA and VNT were 94.81% (kappa value, 0.896). The B-ELISA could specifically recognize anti-NDRV sera without cross-reacting with other positive serums for other major diseases in ducks and geese. The inter- and intra-assay coefficients of variation (CVs) of the B-ELISA and VNT assays were acceptable. In conclusion, the novel B-ELISA could be a rapid, simple, safe, and economically attractive alternative to the VNT in assessing duck flocks' immunity status and in epidemiological surveillance in multiple waterfowl species. IMPORTANCE NDRV disease is a new epidemic disease in waterfowl that first appeared in China. Compared with the classical DRV (CDRV), NDRV is associated with more severe symptoms, a higher mortality rate, and a broader host range. NDRV has become the prevalent genotype in China. At present, there are no commercially available diagnostic products for the NDRV disease. VNT, as the gold standard serologic test, is not only time-consuming and laborious, but also has high requirements for facilities and equipment, which is not suitable for clinical application. Conventional ELISA requires specific antispecies conjugates that are not currently available. B-ELISA not only has the advantage of higher analysis specificity, but also can be used to test specific antibodies against different waterfowl species, because no species-specific conjugates are required in such detection. Therefore, it is necessary to establish a B-ELISA for the detection of antibodies against NDRV in waterfowl species.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Detection and Identification of Avian Reovirus in Young Geese ( Anser anser domestica) in Poland. Animals (Basel) 2022; 12:ani12233346. [PMID: 36496863 PMCID: PMC9736766 DOI: 10.3390/ani12233346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Avian reovirus (ARV) is a cause of infections of broiler and turkey flocks, as well as waterfowl birds. This case report describes a reovirus detection in a fattening goose flock. GRV-infected geese suffer from severe arthritis, tenosynovitis, pericarditis, depressed growth, or runting-stunting syndrome (RSS), malabsorption syndrome, and respiratory and enteric diseases. GRV (goose reovirus) caused pathological lesions in various organs and joints, especially in the liver and spleen. GRV infection causes splenic necrosis, which induces immunosuppression, predisposing geese to infection with other pathogens, which could worsen the disease and lead to death. Our results showed that GRV was detected via RT-PCR and isolated in SPF (Specific Pathogen Free) embryos. This is the first report of the involvement of reovirus in arthritis, and the generalized infection of young geese in Poland, resulting in pathological changes in internal organs and sudden death. This study also provides new information about the GRV, a disease that is little known and underestimated.
Collapse
|
12
|
Huang C, Huang Y, Liu Z, Li J, Han J, Liu Y, Liu J, Chen H, Chen Z. Isolation and characterization of a duck reovirus strain from mature ducks in China. Poult Sci 2022; 102:102345. [PMID: 36571873 PMCID: PMC9800190 DOI: 10.1016/j.psj.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
In 2018, a disease characterized by splenic hemorrhage and necrosis killed ducks in a duck farm in Guangxi province, China. A duck reovirus strain was isolated from the tissues of the dead ducks by inoculating duck embryos and BHK-21 cells. Electron microscopy of the cultured the isolate showed that the viral particles were nearly round in shape and approximately 70 nm in diameter, and they were designated DRV-GL18. Sequence analysis showed that the GL18 strain viral genome was 23,419 nt in length and had 10 dsRNA segments. Phylogenetic analysis of cDNA amplicons of segments encoding the protein σC which are outer capsid proteins showed that the isolate belongs to the branch of the epidemic strains of duck reovirus. The Recombination Detection Program (RDP) and SimPlot program analyses suggested potential genetic recombination events in the M2 segments. Pathogenicity experiments revealed that GL18 produced severe hemorrhaging in livers and necrosis in the spleen of infected SPF ducklings. A death rate of 50% in the experimental ducklings was calculated during the first 7 d, and the rest of the ducklings were observed to undergo spleen necrosis. These data suggested that GL18 is a duck reovirus isolate with severer pathogenicity, and it could be a candidate for development of vaccine. This is the first reported isolation of duck reovirus from mature ducks.
Collapse
|
13
|
Varga-Kugler R, Marton S, Thuma Á, Szentpáli-Gavallér K, Bálint Á, Bányai K. Candidate 'Avian orthoreovirus B': an emerging waterfowl pathogen in Europe and Asia? Transbound Emerg Dis 2022; 69:e3386-e3392. [PMID: 35810357 DOI: 10.1111/tbed.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
A fusogenic virus was isolated from a flock of breeder Pekin ducks in 2019, Hungary. The affected flock experienced a marked decrease in egg production. Histopathologic lesions were seen in the oviduct and in the lungs of birds sent for diagnostic investigation. The fusogenic agent was characterized as an orthoreovirus by viral metagenomics. The assembled viral genome was composed of 10 genomic segments and was 23,433 nucleotides (nt) in length. The study strain, designated Reo/HUN/DuckDV/2019, shared low-to-medium gene-wise sequence identity with avian orthoreovirus strains from galliform and anseriform birds (nt, 38.90% to 72.33%) as well as with representative strains of neoavian orthoreoviruses (nt, 40.07% to 68.23%). On the contrary, the study strain shared 86.48% to 95.01% pairwise nt sequence identities with recent German and Chinese reovirus isolates, D2533/6 and Ych, respectively. Phylogenetic analysis clustered all three unusual waterfowl pathogens on a monophyletic branch, indicating a common evolutionary origin of Reo/HUN/DuckDV/2019 with these enigmatic orthoreoviruses described over the past few years. The finding that a candidate new orthoreovirus species, tentatively called Avian orthoreovirus B, was isolated in recent years in Europe and Asia in moribund ducks seems an alarming sign that needs to be better evaluated by extending laboratory diagnosis of viral pathogens in countries where the waterfowl industry is important. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Katalin Szentpáli-Gavallér
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary.,Current address: CEVA-Phylaxia, Szállás u. 5., H-1107, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078, Budapest, Hungary
| |
Collapse
|
14
|
Huang Y, Zhang J, Dong J, Li L, Kuang R, Sun M, Liao M. Isolation and characterization of a new goose orthoreovirus causing liver and spleen focal necrosis in geese, China. Transbound Emerg Dis 2021; 69:3028-3034. [PMID: 34259392 DOI: 10.1111/tbed.14236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/09/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Since July 2020, an infectious disease characterized by liver and spleen white focal necrosis has been spreading widely through geese farms in many regions of China. A novel goose orthoreovirus (GRV), designated GRV-GD2020, was isolated from the liver and spleen of dead geese. Phylogenetic analysis and sequence comparison revealed that all the genes of GRV-GD2020 clustered with other waterfowl-origin orthoreovirus. However, the gene constellation of GRV-GD2020 was not similar to that of any particular strain. Instead, the genomic segments of GRV-GD2020 showed 27.5-97.3% similarities to that of other waterfowl-origin orthoreovirus isolates. Waterfowl-origin orthoreovirus infections characterized by liver and spleen focal necrosis had not emerged in recent years. The re-emergence of the disease may be related to the recombination of the genome segments of Muscovy duck reovirus (MDRV), GRV, and new-type duck orthoreovirus. In summary, we determined that the GRV-GD2020 strain, causing goose liver and spleen focal necrosis, is a new variant of waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Ruihuan Kuang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
15
|
Novel duck reovirus exhibits pathogenicity to specific pathogen-free chickens by the subcutaneous route. Sci Rep 2021; 11:11769. [PMID: 34083583 PMCID: PMC8175558 DOI: 10.1038/s41598-021-90979-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
To study the pathogenicity of new duck reovirus (NDRV) to chickens, eighty 3-day-old SPF chickens were equally divided into two groups. The experimental group was inoculated with a NDRV challenge strain of 100 μL (10-5.00 ELD50/0.1 mL) by the subcutaneous (s.c.) route, and the control group was inoculated with 100 μL of sterile phosphate-buffered saline (PBS) by the same route. In the experimental group, chickens exhibited introflexion of claws, performing of splits, stunting syndrome, weight loss and death. Gross lesions such as enlargement and yellowish-white focal necroses were observed in the liver and spleen. Microscopic changes were typical including varying degrees of hepatocyte steatosis and necrosis, splenic lymphocyte necrosis, interstitial pneumonia. Viral loads were detected in lung, liver, heart, spleen, duodenum, burse and kidney. The liver and spleen viral loads remained a much higher level and maintained for a longer time, suggesting that these tissues might be the target organs. In summary, NDRV can cause systemic infections and death in chickens, which indicated that chickens may be infected by NDRV in poultry production.
Collapse
|
16
|
Affiliation(s)
- L. A. Arias-Sosa
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Alex L. Rojas
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
17
|
Metagenomic characterisation of additional and novel avian viruses from Australian wild ducks. Sci Rep 2020; 10:22284. [PMID: 33335272 PMCID: PMC7747739 DOI: 10.1038/s41598-020-79413-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Birds, notably wild ducks, are reservoirs of pathogenic and zoonotic viruses such as influenza viruses and coronaviruses. In the current study, we used metagenomics to detect and characterise avian DNA and RNA viruses from wild Pacific black ducks, Chestnut teals and Grey teals collected at different time points from a single location. We characterised a likely new species of duck aviadenovirus and a novel duck gyrovirus. We also report what, to the best of our knowledge, is the first finding of an avian orthoreovirus from Pacific black ducks and a rotavirus F from Chestnut teals. Other viruses characterised from the samples from these wild ducks belong to the virus families Astroviridae, Caliciviridae and Coronaviridae. Some of the viruses may have potential cross-species transmissibility, while others indicated a wide genetic diversity of duck viruses within a genus. The study also showed evidence of potential transmission of viruses along the East Asian-Australasian Flyway; potentially facilitated by migrating shorebirds. The detection and characterisation of several avian viruses not previously described, and causing asymptomatic but potentially also symptomatic infections suggest the need for more virus surveillance studies for pathogenic and potential zoonotic viruses in wildlife reservoirs.
Collapse
|
18
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhang C. The phosphoproteomic responses of duck (Cairna moschata) to classical/novel duck reovirus infections in the spleen tissue. Sci Rep 2020; 10:15315. [PMID: 32943705 PMCID: PMC7499213 DOI: 10.1038/s41598-020-72311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Duck reovirus (DRV) is a fatal member of the genus Orthoreovirus in the family Reoviridae. The disease caused by DRV leads to huge economic losses to the duck industry. Post-translational modification is an efficient strategy to enhance the immune responses to virus infection. However, the roles of protein phosphorylation in the responses of ducklings to Classic/Novel DRV (C/NDRV) infections are largely unknown. Using a high-resolution LC–MS/MS integrated to highly sensitive immune-affinity antibody method, phosphoproteomes of Cairna moschata spleen tissues under the C/NDRV infections were analyzed, producing a total of 8,504 phosphorylation sites on 2,853 proteins. After normalization with proteomic data, 392 sites on 288 proteins and 484 sites on 342 proteins were significantly changed under the C/NDRV infections, respectively. To characterize the differentially phosphorylated proteins (DPPs), a systematic bioinformatics analyses including Gene Ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation were performed. Two important serine protease system-related proteins, coagulation factor X and fibrinogen α-chain, were identified as phosphorylated proteins, suggesting an involvement of blood coagulation under the C/NDRV infections. Furthermore, 16 proteins involving the intracellular signaling pathways of pattern-recognition receptors were identified as phosphorylated proteins. Changes in the phosphorylation levels of MyD88, NF-κB, RIP1, MDA5 and IRF7 suggested a crucial role of protein phosphorylation in host immune responses of C. moschata. Our study provides new insights into the responses of ducklings to the C/NDRV infections at PTM level.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
19
|
Zhang S, Li W, Liu X, Li X, Gao B, Diao Y, Tang Y. A TaqMan-based real-time PCR assay for specific detection of novel duck reovirus in China. BMC Vet Res 2020; 16:306. [PMID: 32843030 PMCID: PMC7445919 DOI: 10.1186/s12917-020-02523-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In China, Newly emerging duck reovirus (NDRV) variants have been causing major disease problems in cherry valley ducks. NDRV has the potential to cause high morbidity and 5-50% mortality rates. Severe hemorrhagic-necrosis in the liver and spleen were commonly seen in NDRV affected ducks. The availability of upgraded methods for rapid diagnosis of newly emerging DRV variants is crucial for successful DRV infection control and prevention. RESULTS In this study, we present a TaqMan-based real-time PCR assay (RT-qPCR) for the detection of NDRV infection. Using the conserved regions within the NDRV genome, we designed the specific primers and probe. The lower limit of detection for NDRV infection was 10 copies/μL (Ct values: 38.3) after the optimization of the RT-qPCR conditions. By cross-checking with other duck viral pathogens, no cross-reactivity was observed confirming the assay was highly specific for the detection of NDRV. Reproducibility of the RT-qPCR was confirmed by intra- and inter-assay variability was less than 2.91%(Intra-assay variability of Ct values: 0.07-1.48%; Interassay variability of Ct values: 0.49-2.91%). This RT-qPCR and conventional PCR (cPCR) detected one hundred and twenty samples of NDRV infection from different regions. The result shows that the positive rates were 94.17 and 84.17% respectively. The detection rate of RT-qPCR rapid detection assay was 10% higher than that of the cPCR method. CONCLUSION This research developed a highly sensitive, specific, reproducible and versatile of RT-qPCR for quantitatively detecting NDRV. It can be used to study the pathogenesis and epidemiology investigation of NDRV.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Weihua Li
- College of Animal medical, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaodong Liu
- Qingdao Yibang Bioengineering Co. Ltd., Qingdao, 266000, Shandong, China
| | - Xudong Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Bin Gao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.
| |
Collapse
|
20
|
Yang Y, Gaspard G, McMullen N, Duncan R. Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus Speciation. Viruses 2020; 12:v12070702. [PMID: 32610593 PMCID: PMC7412057 DOI: 10.3390/v12070702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
The Reoviridae family is the only non-enveloped virus family with members that use syncytium formation to promote cell–cell virus transmission. Syncytiogenesis is mediated by a fusion-associated small transmembrane (FAST) protein, a novel family of viral membrane fusion proteins. Previous evidence suggested the fusogenic reoviruses arose from an ancestral non-fusogenic virus, with the preponderance of fusogenic species suggesting positive evolutionary pressure to acquire and maintain the fusion phenotype. New phylogenetic analyses that included the atypical waterfowl subgroup of avian reoviruses and recently identified new orthoreovirus species indicate a more complex relationship between reovirus speciation and fusogenic capacity, with numerous predicted internal indels and 5’-terminal extensions driving the evolution of the orthoreovirus’ polycistronic genome segments and their encoded FAST and fiber proteins. These inferred recombination events generated bi- and tricistronic genome segments with diverse gene constellations, they occurred pre- and post-orthoreovirus speciation, and they directly contributed to the evolution of the four extant orthoreovirus FAST proteins by driving both the gain and loss of fusion capability. We further show that two distinct post-speciation genetic events led to the loss of fusion in the waterfowl isolates of avian reovirus, a recombination event that replaced the p10 FAST protein with a heterologous, non-fusogenic protein and point substitutions in a conserved motif that destroyed the p10 assembly into multimeric fusion platforms.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Gerard Gaspard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
21
|
Wang W, Liang J, Shi M, Chen G, Huang Y, Zhang Y, Zhao Z, Wang M, Li M, Mo M, Wei T, Huang T, He X, Wei P. The diagnosis and successful replication of a clinical case of Duck Spleen Necrosis Disease: An experimental co-infection of an emerging unique reovirus and Salmonella indiana reveals the roles of each of the pathogens. Vet Microbiol 2020; 246:108723. [PMID: 32605746 DOI: 10.1016/j.vetmic.2020.108723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
Abstract
Duck spleen necrosis disease (DSND) is an emerging infectious disease that causes significant economic loss in the duck industry. In 2018, a duck reovirus (named DRV/GX-Y7) and Salmonella indiana were both isolated from the spleens and livers of diseased ducks with DSND in China. The DRV/GX-Y7 strain could propagate in the Vero, LMH, DF-1 and DEF cells with obvious cytopathic effects. The genome of DRV/GX-Y7 was 23,418 bp in length, contained 10 dsRNA segments, ranging from 3959 nt (L1) to 1191 nt (S4). The phylogenetic analysis showed that the DRV/GX-Y7 strain was in the same branch with the new waterfowl-origin reovirus cluster, but was obviously far distant from the clusters of other previous waterfowl-origin reoviruses Muscovy duck reovirus (MDRV) and goose-origin reovirus (GRV), broiler/layer-origin reovirus (ARV) and turkey-origin reovirus (TRV). The RDP and SimPlot program analysis revealed that there were two potential genetic reassortment events in the M2 and S1 segments of the genome. In order to have a clear insight into the pathogenic mechanism of DRV/GX-Y7 and S. Indiana in clinical DSND, an infection experiment was further conducted by challenging commercial ducklings with the two isolates individually and with both. The results showed that DRV/GX-Y7 produced severe hemorrhagic and/or necrotic lesions in the immune organs (thymus, spleen, and bursae) of experimentally infected ducklings. And, that the co-infection of DRV/GX-Y7 and S. Indiana could greatly enhance the pathogenesis by increasing the morbidity and mortality in ducklings whose clinical symptoms and lesions were similar to the natural clinical DSND cases. In summary, the results suggested that the pathogen causing duck spleen necrosis was an emerging unique genetic reassortment strain of duck Orthoreovirus that was significantly different from any previously reported waterfowl-derived Orthoreovirus and the co-infection with the Salmonella isolate could increase the severity of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Jingzhen Liang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Guo Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Yu Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Yan Zhang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Zengzhi Zhao
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Min Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China
| | - Xiumiao He
- School of Marine Sciences and Biotechnology/Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, Guangxi 530006, China.
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530005, China.
| |
Collapse
|
22
|
Zheng M, Chen X, Wang S, Wang J, Huang M, Xiao S, Cheng X, Chen S, Chen X, Lin F, Chen S. A TaqMan-MGB real-time RT-PCR assay with an internal amplification control for rapid detection of Muscovy duck reovirus. Mol Cell Probes 2020; 52:101575. [PMID: 32305339 DOI: 10.1016/j.mcp.2020.101575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for the detection of Muscovy duck reovirus (MDRV) RNA in clinical samples is described. The assay is based on TaqMan-MGB technology, consisting of two primers and one probe labeled with the reporter dye 6-carboxyfluorescein that binds selectively to the sigma B-protein gene of MDRV. This technique also includes an Internal Positive Control (IPC). The real-time RT-PCR assay was able to detect MDRVs, whereas other common waterfowl-origin viral pathogens were not recognised by the established oligonucleotide set, thus showing that the test was specific for MDRV. The sensitivity of the assay was 2.83 × 101 copies/μL and was 100 times higher than that of the conventional RT-PCR. The variation coefficients of intra-assay and inter-assay were less than 1.5% which verified sufficient repeatability of this assay. The use of β-actin mRNA as an IPC in order not to reduce the efficiency of the assay was adopted. The detection for 100 clinical samples showed that the positive rate of the established TaqMan-MGB real-time RT-PCR method was 87% (87/100), while the positive rate of the conventional RT-PCR was 83% (83/100), with the coincidence rate was 97.14%. Sensitivity and positive rate for clinical samples of TaqMan fluorescent quantitative RT-PCR were higher than conventional RT-PCR. The high specificity, sensitivity, and rapidity TaqMan-MGB real-time RT-PCR assay with the use of IPC to monitor for false negative results can make this method suitable for the pathogenic surveillance and epidemiological investigation of MDRV infection.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Jingxiang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoli Chen
- Agricultural and Rural Bureau, Sanming, 365000, China
| | - Fengqianq Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| |
Collapse
|
23
|
Zhang XL, Shao JW, Li XW, Mei MM, Guo JY, Li WF, Huang WJ, Chi SH, Yuan S, Li ZL, Huang SJ. Molecular characterization of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. BMC Vet Res 2019; 15:143. [PMID: 31077188 PMCID: PMC6511161 DOI: 10.1186/s12917-019-1877-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/22/2019] [Indexed: 11/15/2022] Open
Abstract
Background Novel Muscovy duck reovirus (N-MDRV), emerged in southeast China in 2002, which can infect a wide range of waterfowl and induces clinical signs and cytopathic effects that are distinct from those of classical MDRV, and continues to cause high morbidity and 5–50% mortality in ducklings. The present study aimed to investigate the characteristics of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. Results Two novel MDRV strains, designated as MDRV-SH12 and MDRV-DH13, were isolated from two diseased Muscovy ducklings in Guangdong province, China in June 2012 and September 2013, respectively. Sequencing of the complete genomes of these two viruses showed that they consisted of 23,418 bp and were divided into 10 segments, ranging from 1191 bp (S4) to 3959 bp (L1) in length, and all segments contained conserved sequences in the 5′ non-coding region (GCUUUU) and 3′ non-coding region (UCAUC). Pairwise sequence comparisons demonstrated that MDRV-SH12 and MDRV-DH13 showed the highest similarity with novel MDRVs. Phylogenetic analyses of the nucleotide sequences of all 10 segments revealed that MDRV-SH12 and MDRV-DH13 were clustered together with other novel waterfowl-origin reoviruses and were distinct from classical waterfowl-origin and chicken-origin reoviruses. The analyses also showed possible genetic re-assortment events in segment M2 between waterfowl-origin and chicken-origin reoviruses and the segments encoding λA, μA, μNS, σA, and σNS between classical and novel waterfowl-origin reoviruses. Potential recombination events detection in segment S2 suggests that MDRV-SH12 and MDRV-DH13 may be recombinants of classical and novel WRVs. Conclusions The results presented in this study, the full genomic data for two novel MDRV strains, will improve our understanding of the evolutionary relationships among the waterfowl-origin reoviruses circulating in China, and may aid in the development of more effective vaccines against various waterfowl-origin reoviruses. Electronic supplementary material The online version of this article (10.1186/s12917-019-1877-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jian-Wei Shao
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiao-Wen Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Min-Min Mei
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jin-Yue Guo
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Feng Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Jing Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shi-Hong Chi
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhi-Li Li
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Shu-Jian Huang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
24
|
Isolation and characterization of duck adenovirus 3 circulating in China. Arch Virol 2018; 164:847-851. [PMID: 30564896 PMCID: PMC6394704 DOI: 10.1007/s00705-018-4105-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
Recently, infectious disease outbreaks characterized by swelling and hemorrhagic liver and kidneys occurred in Muscovy ducklings in China. Four viruses were isolated and identified as adenoviruses by transmission electron microscopy (TEM) and polymerase chain reaction (PCR). Sequence analysis identified the new isolates as duck adenovirus 3 (DAdV-3), species Duck aviadenovirus B. The pathogenicity of the new isolate DAdV-3 FJGT01 was investigated using challenge experiments. The gross lesions in the animal experiment were similar to the clinical lesions observed in the diseased ducks. TEM examination of liver sample showed that virions accumulated and arranged in crystal lattice formations in the nuclei of hepatocytes. The present study provides new information about the epidemiology and characteristics of duck adenovirus associated with Muscovy ducklings.
Collapse
|
25
|
Chen S, Lin F, Chen S, Hu Q, Cheng X, Jiang B, Zhu X, Wang S, Zheng M, Huang M. Development of a live attenuated vaccine against Muscovy duck reovirus infection. Vaccine 2018; 36:8001-8007. [PMID: 30420117 DOI: 10.1016/j.vaccine.2018.10.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/30/2023]
Abstract
The Muscovy duck reovirus (MDRV) is a highly pathogenic virus that causes substantial economic losses in the Muscovy duck industry. While MDRV poses a significant threat to Muscovy ducklings, no vaccine candidates are available to date to alleviate MDRV infection throughout the world. The present study presents efforts toward establishing an attenuated vaccine for MDRV. For this purpose, a live attenuated vaccine strain named CA was obtained via alternate propagation of the MDRV isolate MW9710 in both Muscovy duck embryo fibroblasts (MDEFs) and chicken embryo fibroblasts (CEFs) for 90 passages. The CA strain achieved an adaptive growth capacity in CEFs with a viral titer that ranged between 105.0-105.5 TCID50/100 μL and lost its pathogenicity in 1-day-old Muscovy ducklings. Compared to the parent strain MW9710, the CA strain has 42 scattered amino acid substitutions, most of which are located in the λB, λC, μB, σB, and σC protein. The CA strain maintained its attenuation and showed no gene mutation or virulence reversion after back propagation into 1-day-old ducklings for five rounds. The minimum protective dose was calculated to be 300 TCID50 of the CA strain. Furthermore, a single dose of CA vaccine protected immunized ducklings against lethal challenge by the virulent MDRV strain MW9710 and significantly decreased viral loads. In summary, the CA strain exhibited striking genetic stability, excellent safety, and effective immunogenicity. This CA strain of MDRV is a promising vaccine candidate for the prevention and control of MDRV infection.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China.
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| |
Collapse
|
26
|
Yun T, Hua J, Ye W, Yu B, Ni Z, Chen L, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in the spleen tissue of Cairna moschata. J Proteomics 2018; 193:162-172. [PMID: 30339941 DOI: 10.1016/j.jprot.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Duck reovirus (DRV), a member of the genus Orthoreovirus in the family Reoviridae, was first isolated from Muscovy ducks. The disease associated with DRV causes great economic losses to the duck industry. However, the responses of duck (Cairna moschata) to the classical/novel DRV (C/NDRV) infections are largely unknown. To reveal the relationship of pathogenesis and immune response, the proteomes of duck spleen cells under the control and C/NDRV infections were compared. In total, 5986 proteins were identified, of which 5389 proteins were quantified. The different accumulated proteins (DAPs) under the C/NDRV infections showed displayed various biological functions and diverse subcellular localizations. The proteins related to the serine protease system were siginificantly changed, suggesting that the activated serine protease system may play an important role under the C/NDRV infections. Furthermore, the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues were compared. Only a small number of common DAPs were identified in both liver and spleen tissues, suggesting diversified pattern involved in the responses to the C/NRDV infections. However, the changes in the proteins involved in the serine protease systems were similar in both liver and spleen cells. Our data may give a comprehensive resource for investigating the responses to C/NDRV infections in ducks. SIGNIFICANCE: A newly developed MS/MS-based method involving isotopomer labels and 'tandem mass' has been applied to protein accurate quantification in current years. However, no studies on the responses of duck (Cairna moschata) spleen tissue to the classical/novel DRV (C/NDRV) infections have been performed. As a continued study of our previous report on the responses of duck liver tissue to the C/NDRV infections, the current study further compared the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues. Our results will provide an opportunity to reveal the relationship of pathogenesis and immune response and basic information on the pathogenicity of C/NDRV in ducks.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
27
|
Yun T, Hua J, Ye W, Yu B, Chen L, Ni Z, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata. Sci Rep 2018; 8:10079. [PMID: 29973707 PMCID: PMC6031628 DOI: 10.1038/s41598-018-28499-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Duck reovirus (DRV) is an typical aquatic bird pathogen belonging to the Orthoreovirus genus of the Reoviridae family. Reovirus causes huge economic losses to the duck industry. Although DRV has been identified and isolated long ago, the responses of Cairna moschata to classical/novel duck reovirus (CDRV/NDRV) infections are largely unknown. To investigate the relationship of pathogenesis and immune response, proteomes of C. moschata liver cells under the C/NDRV infections were analyzed, respectively. In total, 5571 proteins were identified, among which 5015 proteins were quantified. The differential expressed proteins (DEPs) between the control and infected liver cells displayed diverse biological functions and subcellular localizations. Among the DEPs, most of the metabolism-related proteins were down-regulated, suggesting a decrease in the basal metabolisms under C/NDRV infections. Several important factors in the complement, coagulation and fibrinolytic systems were significantly up-regulated by the C/NDRV infections, indicating that the serine protease-mediated innate immune system might play roles in the responses to the C/NDRV infections. Moreover, a number of molecular chaperones were identified, and no significantly changes in their abundances were observed in the liver cells. Our data may give a comprehensive resource for investigating the regulation mechanism involved in the responses of C. moschata to the C/NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
28
|
Wang Q, Liu M, Xu L, Wu Y, Huang Y. Transcriptome analysis reveals the molecular mechanism of hepatic fat metabolism disorder caused by Muscovy duck reovirus infection. Avian Pathol 2017; 47:127-139. [PMID: 28911249 DOI: 10.1080/03079457.2017.1380294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this work was to clarify the molecular mechanism underlying the fatty degeneration of livers infected with Muscovy duck reovirus (MDRV), which produces obvious white necrotic foci in the liver. Transcriptome data for MDRV-infected Muscovy duck livers and control livers were sequenced, assembled, and annotated with Illumina® HiSeq 2000. The differentially expressed genes were screened and their functions were analysed. We also determined and confirmed the molecular mechanism of the hepatic fat metabolism disorder caused by MDRV infection. The expression of 4190 genes was higher in the infected livers than in the control livers, and the expression of 1113 genes was reduced. A Gene Ontology analysis showed that these genes were involved in 48 biological functions, and were significantly enriched in 237 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The free fatty acid content was significantly higher in the livers of infected Muscovy ducks than in the control livers (P < 0.01). The KEGG analysis showed that MDRV infection inhibited the cholesterol efflux from hepatic cells and reduced the expression of key enzymes involved in fatty acid degradation (scavenger receptor class b type 1, ABCG8, and APOA4), leading to the accumulation of fatty acids and cholesterol in the liver cells. In this study, we have identified the genes differentially expressed in livers infected by MDRV, from which we inferred the genes associated with lipodystrophia, and elucidated the molecular mechanism of the hepatic steatosis induced by MDRV. ABBREVIATIONS ABC: ATP binding cassette transport; ACADVL: acyl-CoA dehydrogenase, very long chain; ACAT: mitochondrial-like acetyl-CoA acetyltransferase A; ACAT2: acetyl-CoA acyltransferase 2; ACNAT2: acyl-coenzyme A amino acid N-acyltransferase 2-like; ACOT1: acyl-CoA thioesterase 1; ACOT7: acyl-CoA thioesterase 7; ACOX1: acyl-CoA oxidase 1, palmitoyl; ACSBG2: acyl-CoA synthetase bubblegum family member 2; ACSL1: acyl-CoA synthetase long-chain family member 1; ADH1: alcohol dehydrogenase 1; APOA4: apolipoprotein A-IV; ARV: avian reovirus; cDNA: complementary deoxyribonucleic acid; COG: Clusters of Orthologous Groups; DEG: differentially expressed gene; DGAT: diacylgycerol acyltransferase; DNA: deoxyribonucleic acid; ECI2: enoyl-CoA delta isomerase 2; EHHADH: enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase; FDR: false discovery rate; GCDH: Pseudopodoces humilis glutaryl-CoA dehydrogenase; GO: Gene Ontology; HADHA: hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit; I-FABP: intestinal fatty acid binding protein; KEGG: Kyoto Encyclopedia of Genes and Genomes; L-FABP: liver fatty acid binding protein; MDRV: Muscovy duck reovirus; MOI: multiplicity of infection; NPC1L1: Niemann-Pick C1-like 1; qPCR: real-time quantitative polymerase chain reaction; RNA: ribonucleic acid; RNase: ribonuclease; RNA-seq: RNA sequencing technology; RPKM: reads per kilobase per million mapped reads; SR-B1: scavenger receptor class b type 1.
Collapse
Affiliation(s)
- Quanxi Wang
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Mengxi Liu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Lihui Xu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Yijian Wu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Yifan Huang
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| |
Collapse
|
29
|
Wang Q, Liu M, Yuan X, Li C, Chen S, Zhuang Y, Wu Y, Huang Y, Wu B. Transcriptomic analysis reveals the molecular mechanism of apoptosis induced by Muscovy duck reovirus. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
31
|
A duck reovirus variant with a unique deletion in the sigma C gene exhibiting high pathogenicity in Pekin ducklings. Virus Res 2016; 215:37-41. [DOI: 10.1016/j.virusres.2016.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
|
32
|
Wang Q, Wu Y, Cai Y, Zhuang Y, Xu L, Wu B, Zhang Y. Spleen Transcriptome Profile of Muscovy Ducklings in Response to Infection With Muscovy Duck Reovirus. Avian Dis 2015; 59:282-90. [PMID: 26473680 DOI: 10.1637/10992-112514-reg] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Muscovy duck reovirus (MDRV) causes high morbidity and mortality in ducklings. However, the molecular basis for pathogenesis of this virus remains poorly understood, and the complete genome sequence of Muscovy duck is lacking. Here we report the transcriptome profile of Muscovy ducks in response to MDRV infection. RNA sequencing technology was employed to obtain a representative complement of transcripts from the spleen of ducklings, and then differential gene expression was analyzed between MDRV-YB strain infected ducks and noninfected ducks. This analysis generated 65,536 unigenes. Of these, 6458 genes were found to be significantly differentially expressed between the infected and noninfected groups. The symptom and pathology of ducks infected with MDRV-YB was correlated with the greater proportion of decreased expression genes (4906) than increased expression (1552) level. Gene ontology analysis assigned differentially expressed genes to the categories: "biological processes," "cellular functions," and "molecular functions." Differentially expressed genes involved in the innate immune system were analyzed further, and 128 of these genes showed decreased expression and 86 showed increased expression between the infected and noninfected groups. These genes represented the Janus kinase-signal transducer and activator of transcription signaling pathway, and the retinoic acid-inducible gene I (RIG-I)-like and Toll-like receptor (TLR) signaling pathways and included interferon (IFN) α, IFNγ, interleukin 6, RIG-I, and TLR4. The data were verified by SYBR fluorescence quantitative polymerase chain reaction (SYBR-qPCR). Our findings offer new insight into the host immune response to MDRV infection.
Collapse
Affiliation(s)
- Quanxi Wang
- A College of Life Science, Fujian Normal University, Fuzhou, Fujian 350119, China.,B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yijian Wu
- B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yilong Cai
- B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yubin Zhuang
- B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lihui Xu
- B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baocheng Wu
- B College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanding Zhang
- A College of Life Science, Fujian Normal University, Fuzhou, Fujian 350119, China
| |
Collapse
|
33
|
Yun T, Chen H, Yu B, Zhang C, Chen L, Ni Z, Hua J, Ye W. Development and application of an indirect ELISA for the detection of antibodies to novel duck reovirus. J Virol Methods 2015; 220:55-9. [PMID: 25907470 DOI: 10.1016/j.jviromet.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
A novel duck reovirus (N-DRV) disease emerged in China in 2000 and it has become an epidemic genotype. A test for detection of virus-specific antibodies in serum samples would be useful for epidemiological investigations. Currently, Currently, serological assays for N-DRV diagnosis are not available. A test for detection of virus-specific antibodies in serum samples would be useful for epidemiological investigations. In this study, a highly sensitive and specific indirect enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to N-DRV was developed. The outer capsid (σC) of N-DRV was cloned and expressed in Escherichia coli as a coating antigen. The antigen concentration and serum dilution were optimized using a checkerboard titration. Furthermore, the specificity of σC-ELISA assay was confirmed by cross checking with other duck viral pathogens. In comparison with the western blot, the sensitivity and specificity of the σC-ELISA was 92.6% and 88.9%, respectively, and agreement of two tests was excellent with κ value of 0.786 (p < 0.05). A serological survey was performed using the assay on serum samples from different age and species of duck flocks in the Zhejiang and Jiangsu Province, China. The seropositive rate of the 1209 serum samples was 57.7%. In conclusion, the developed σC-ELISA assay is a very specific and sensitive test that will be useful for large-scale serological survey in N-DRV infection and monitoring antibodies titers against N-DRV.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haipeng Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
34
|
Chen Z, Luo G, Wang Q, Wang S, Chi X, Huang Y, Wei H, Wu B, Huang S, Chen JL. Muscovy duck reovirus infection rapidly activates host innate immune signaling and induces an effective antiviral immune response involving critical interferons. Vet Microbiol 2015; 175:232-43. [DOI: 10.1016/j.vetmic.2014.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/24/2022]
|
35
|
Detection of shared genes among Asian and European waterfowl reoviruses in the whole genome constellations. INFECTION GENETICS AND EVOLUTION 2014; 28:55-7. [DOI: 10.1016/j.meegid.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/18/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022]
|
36
|
Complete genome sequence of an avian reovirus isolated from wild mallard ducks in china. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00813-14. [PMID: 25237015 PMCID: PMC4172264 DOI: 10.1128/genomea.00813-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete sequence of novel duck reovirus (N-DRV) strain SD12 isolated from diseased wild mallard ducklings in the Shandong Province of China in 2012. The complete genome consists of 23,420 nucleotide base pairs (bp), including 10 segments ranging from 1,191 bp (S4) to 3,959 bp (L1).
Collapse
|
37
|
The complete genome sequence of a European goose reovirus strain. Arch Virol 2014; 159:2165-9. [DOI: 10.1007/s00705-014-2003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
|
38
|
Guo D, Qiu N, Shaozhou W, Bai X, He Y, Zhang Q, Zhao J, Liu M, Zhang Y. Muscovy duck reovirus p10.8 protein localizes to the nucleus via a nonconventional nuclear localization signal. Virol J 2014; 11:37. [PMID: 24564937 PMCID: PMC4015296 DOI: 10.1186/1743-422x-11-37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background It was previously report that the first open reading frame of Muscovy duck reocvirus S4 gene encodes a 95-amino-acid protein, designed p10.8, which has no sequence similarity to other known proteins. Its amino acid sequence offers no clues about its function. Results Subcellular localization and nuclear import signal of p10.8 were characterized. We found that p10.8 protein localizes to the nucleus of infected and transfected cells, suggesting that p10.8 nuclear localization is not facilitated by viral infection or any other viral protein. A functional non-canonical nuclear localization signal (NLS) for p10.8 was identified and mapped to N-terminus residues 1–40. The NLS has the ability to retarget a large cytoplasmic protein to the nucleus. Conclusions p10.8 imported into the nucleus might via a nonconventional signal nuclear signal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ming Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, P R China.
| | | |
Collapse
|