1
|
Jesudason T, Sharomi O, Fleetwood K, Cheuk AL, Bermudez M, Schirrmacher H, Hauck C, Matthijnssens J, Hungerford D, Tordrup D, Carias C. Systematic literature review and meta-analysis on the prevalence of rotavirus genotypes in Europe and the Middle East in the post-licensure period. Hum Vaccin Immunother 2024; 20:2389606. [PMID: 39257173 PMCID: PMC11404614 DOI: 10.1080/21645515.2024.2389606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle East are limited because they do not include country-specific prevalence data. This study documents country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle East to enable more precise epidemiological modeling and contribute to the evidence-base about circulating rotavirus genotypes in the post-vaccination era. This study systematically searched PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype-specific surveillance data for countries in Europe and the Middle East published between 2006 and 2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta-analysis was conducted using the generic inverse variance method with arcsine transformation and generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the genotype prevalence by country across three date categories corresponding with rotavirus seasons: 2006-2010, 2011-2015, 2016-2021. A total of 7601 deduplicated papers were identified of which 88 studies were included in the final review. Rotavirus genotypes exhibited significant variability across regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P[8], being the most prevalent genotypes through different regions and time-periods. Uncommon genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the European Rotavirus Network. There was high genotype diversity with routinely identified genotypes being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and regions. Continued surveillance at the national and regional levels is relevant to support further research and inform public health decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological VirologyRega Institute, Leuven, Belgium
| | - Daniel Hungerford
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
2
|
Mitra S, Lo M, Saha R, Deb AK, Debnath F, Miyoshi S, Dutta S, Chawla‐Sarkar M. Epidemiology of major entero‐pathogenic viruses and genetic characterization of Group A rotaviruses among children (≤5 years) with acute gastroenteritis in eastern India, 2018‐2020. J Appl Microbiol 2022; 133:758-783. [DOI: 10.1111/jam.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suvrotoa Mitra
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Mahadeb Lo
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Ritubrita Saha
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Alok K. Deb
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Falguni Debnath
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shin‐Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
- Collaborative Research Centre of Okayama University for Infectious Disease ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Mamta Chawla‐Sarkar
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| |
Collapse
|
3
|
Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019-2020). Pathogens 2021; 10:pathogens10060674. [PMID: 34070814 PMCID: PMC8228337 DOI: 10.3390/pathogens10060674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Group A rotavirus (RVA) infection is the leading cause of hospitalization of children under 5 years old, presenting with symptoms of acute gastroenteritis. The aim of our study was to explore the genetic diversity of RVA among patients admitted to Moscow Infectious Disease Clinical Hospital No. 1 with symptoms of acute gastroenteritis. A total of 653 samples were collected from May 2019 through March 2020. Out of them, 135 (20.67%) fecal samples were found to be positive for rotavirus antigen by ELISA. RT-PCR detected rotavirus RNA in 80 samples. Seven G-genotypes (G1, G2, G3, G4, G8, G9, and G12) and three P-genotypes (P[8], P[4], and P[6]) formed 9 different combinations. The most common combination was G9P[8]. However, for the first time in Moscow, the combination G3P[8] took second place. Moreover, all detected viruses of this combination belonged to Equine-like G3P[8] viruses that had never been detected in Russia before. The genotype G8P[8] and G9P[4] rotaviruses were also detected in Moscow for the first time. Among the studied rotaviruses, there were equal proportions of Wa and DS-1-like strains; previous studies showed that Wa-like strains accounted for the largest proportion of rotaviruses in Russia.
Collapse
|
4
|
Sadiq A, Bostan N, Bokhari H, Matthijnssens J, Yinda KC, Raza S, Nawaz T. Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015-2016. PLoS One 2019; 14:e0220387. [PMID: 31361761 PMCID: PMC6667158 DOI: 10.1371/journal.pone.0220387] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVA) are one of the major causes of acute gastroenteritis (AGE) in young children worldwide. Owing to lack of proper surveillance programs and health facilities, developing countries of Asia and Africa carry a disproportionately heavy share of the RVA disease burden. The aim of this hospital-based study was to investigate the circulation of RVA genotypes in Rawalpindi and Islamabad, Pakistan in 2015 and 2016, prior to the implementation of RVA vaccine. 639 faecal samples collected from children under 10 years of age hospitalized with AGE were tested for RVA antigen by ELISA. Among 171 ELISA positive samples, 143 were successfully screened for RT-PCR and sequencing. The prevalence of RVA was found to be 26.8% with the highest frequency (34.9%) found among children of age group 6-11 months. The most predominant circulating genotypes were G3P[8] (22.4%) followed by G12P[6] (20.3%), G2P[4] (12.6%), G1P[8] (11.9%), G9P[6] (11.9%), G3P[4] (9.1%), G1P[6] (4.2%), G9P[8] (4.2%), and G3P[6] (0.7%). A single mixed genotype G1G3P[8] was also detected. The findings of this study provide baseline data, that will help to assess if future vaccination campaigns using currently available RVA vaccine will reduce RVA disease burden and instigate evolutionary changes in the overall RVA biology. The high prevalence of RVA infections in Pakistan require to improve and strengthen the surveillance and monitoring system for RVA. This will provide useful information for health authorities in planning public health care strategies to mitigate the disease burden caused by RVA.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Kwe Claude Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Saqlain Raza
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Tayyab Nawaz
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
5
|
Strydom A, Motanyane L, Nyaga MM, João ED, Cuamba A, Mandomando I, Cassocera M, de Deus N, O'Neill H. Whole-genome characterization of G12 rotavirus strains detected in Mozambique reveals a co-infection with a GXP[14] strain of possible animal origin. J Gen Virol 2019; 100:932-937. [PMID: 31140967 DOI: 10.1099/jgv.0.001270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A high prevalence of G12 rotavirus strains has previously been reported in southern Mozambique. In this study, the full genomes of five Mozambican G12 strains were determined directly from stool using an Illumina Miseq platform. One sample (0060) contained an intergenogroup co-infection of a G12P[8] Wa-like strain and a GXP[14] DS-1-like strain. The sequences of seven genome segments, detected for the GXP[14] strain, clustered with a diverse group of mostly animal strains, suggesting co-infection with a strain of possible animal origin. The stool samples contained G12P[6] rotavirus strains with Wa-like backbones. Phylogenetic analyses of the VP4 and VP7 encoding segments of the G12P[6] strains suggested that they were reassortants containing backbones that are similar to that of the G12P[8] strain. The study confirms previous observations of interspecies transmission and emphasizes the importance of whole-genome sequencing in order to evaluate rotavirus co-infections and reassortants.
Collapse
Affiliation(s)
- Amy Strydom
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Lithabiso Motanyane
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martin M Nyaga
- 2 Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Eva Dora João
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,4 Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | - Assa Cuamba
- 5 Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Inácio Mandomando
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,6 Instituto Nacional de Saúde, Maputo, Mozambique
| | - Marta Cassocera
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Hester O'Neill
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
6
|
Athiyyah AF, Utsumi T, Wahyuni RM, Dinana Z, Yamani LN, Soetjipto, Sudarmo SM, Ranuh RG, Darma A, Juniastuti, Raharjo D, Matsui C, Deng L, Abe T, Doan YH, Fujii Y, Shimizu H, Katayama K, Lusida MI, Shoji I. Molecular Epidemiology and Clinical Features of Rotavirus Infection Among Pediatric Patients in East Java, Indonesia During 2015-2018: Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3. Front Microbiol 2019; 10:940. [PMID: 31130934 PMCID: PMC6510320 DOI: 10.3389/fmicb.2019.00940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Group A rotavirus (RVA) is the most important cause of severe gastroenteritis among children worldwide, and effective RVA vaccines have been introduced in many countries. Here we performed a molecular epidemiological analysis of RVA infection among pediatric patients in East Java, Indonesia, during 2015-2018. A total of 432 stool samples were collected from hospitalized pediatric patients with acute gastroenteritis. None of the patients in this cohort had been immunized with an RVA vaccine. The overall prevalence of RVA infection was 31.7% (137/432), and RVA infection was significantly more prevalent in the 6- to 11-month age group than in the other age groups (P < 0.05). Multiplex reverse transcription-PCR (RT-PCR) revealed that the most common G-P combination was equine-like G3P[8] (70.8%), followed by equine-like G3P[6] (12.4%), human G1P[8] (8.8%), G3P[6] (1.5%), and G1P[6] (0.7%). Interestingly, the equine-like strains were exclusively detected until May 2017, but in July 2017 they were completely replaced by a typical human genotype (G1 and G3), suggesting that the dynamic changes in RVA genotypes from equine-like G3 to typical human G1/G3 in Indonesia can occur even in the country with low RVA vaccine coverage rate. The mechanism of the dynamic changes in RVA genotypes needs to be explored. Infants and children with RVA-associated gastroenteritis presented more frequently with some dehydration, vomiting, and watery diarrhea, indicating a greater severity of RVA infection compared to those with non-RVA gastroenteritis. In conclusion, a dynamic change was found in the RVA genotype from equine-like G3 to a typical human genotype. Since severe cases of RVA infection were prevalent, especially in children aged 6 to 11 months or more generally in those less than 2 years old, RVA vaccination should be included in Indonesia's national immunization program.
Collapse
Affiliation(s)
- Alpha Fardah Athiyyah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Takako Utsumi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rury Mega Wahyuni
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Zayyin Dinana
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Laura Navika Yamani
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Andy Darma
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Juniastuti
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dadik Raharjo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Chieko Matsui
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Maria Inge Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Ikuo Shoji
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Almalki SSR. Circulating rotavirus G and P strains post rotavirus vaccination in Eastern Mediterranean Region. Saudi Med J 2018; 39:755-766. [PMID: 30106412 DOI: 10.15537/smj.2018.8.21394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To detect changes in circulating strains of rotavirus in the Eastern Mediterranean Region post rotavirus immunization drive. METHODS We searched MEDLINE, PubMed, ScienceDirect, and the Cochrane Library and specific database website (Nutrition and Food Sciences) for relevant articles. Our search included websites of a number of relevant organizations in addition to gray literature search. Of the 2198 articles found, we included only 35 studies after excluding irrelevant, ineligible, duplicated, and very low-quality papers. RESULTS Thirty pre-vaccination studies reported frequent rotavirus strains among children below 5 years of age. G1P[8] has been identified as the most dominant type prior to vaccination in Eastern Mediterranean Region (EMR) countries. Five post-vaccination studies conducted in 3 countries (Saudi Arabia, Morocco, and Yemen) illustrated that G1P[8] is the most prevalent strain in Saudi Arabia, and the incidence of G2P[4] has increased from 21.6% to 33.3%. In Yemen, G1P[4] is the most prevalent strain (87.5%), followed by G9P[8] (57%) and G1P[8] (18.5%). Furthermore, in Yemen, G9P[8] were the most prevalent strains accounting to 57% and 14% in G9P[4], post vaccination. Finally, in Morocco, G1P[8] was not reported 3 years post vaccination; however, incidence of G9P[8] was reported at 67% and G2P[4] at 33%. CONCLUSIONS Rotavirus circulating strain prevalence in EMR countries has changed post vaccination, and G9P[8], G2P[4], and G9P[4] have become more dominant. Proportion of rotavirus strains in these countries after vaccination has significantly reduced. There is an increase in circulating strain G2P[4] in the post-vaccination period, which needs further monitoring.
Collapse
Affiliation(s)
- Shaia S R Almalki
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Al Baha University, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
8
|
Nayak MK, De P, Manna B, Dutta S, Bhadra UK, Chawla-Sarkar M. Species A rotaviruses isolated from hospitalized patients over 5 years of age in Kolkata, India, in 2012/13. Arch Virol 2017; 163:745-750. [PMID: 29248967 DOI: 10.1007/s00705-017-3670-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023]
Abstract
In hospital-based diarrhoeal disease surveillance at Infectious Diseases & Beliaghata-General Hospital (May-2012 to April-2013), Kolkata, India, stool samples were collected from patients < 5 years (n = 830) and > 5 years of age (n = 728) hospitalized with diarrhea. Group-A rotavirus (GARV) was identified by ELISA followed by multiplex RT-PCR. In children < 5 years of age, 53.4% of the samples were positive for GARV. In patients > 5 years to 90 years old, only 6.04% (n = 44) tested positive for GARV. G2P[4] strains (n = 16 [36.36%]) were the most prevalent, followed by G9P[4] strains (n = 13 [29.54%]), while P[4]-(n = 30 [68.18%]) was most prevalent among the P genotypes. The GARV strains G2, G9 and P[4] detected in adults clustered together in the phylogenetic tree with the GARV strains identified in children (< 5 years) during the same period. Rotavirus positivity was high among female patients (75%), suggesting that caregivers (mother/grandmother/older-siblings) may get infected through young children or may act as carriers for transmission.
Collapse
Affiliation(s)
- Mukti Kant Nayak
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India. .,Department of Zoology, B. B. Autonomous College, Chandikhol, Jajpur, Odisha, 755044, India.
| | - Papiya De
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Byomkesh Manna
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Uchhal Kumar Bhadra
- Infectious Diseases and Beliaghata General Hospital, 57-Dr SC Banerjee Road, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
9
|
Jamnikar-Ciglenecki U, Kuhar U, Steyer A, Kirbis A. Whole genome sequence and a phylogenetic analysis of the G8P[14] group A rotavirus strain from roe deer. BMC Vet Res 2017; 13:353. [PMID: 29178883 PMCID: PMC5702219 DOI: 10.1186/s12917-017-1280-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Group A rotaviruses (RVA) are associated with acute gastroenteritis in children and in young domestic and wild animals. A RVA strain was detected from a roe deer for the first time during a survey of game animals in Slovenia in 2014. A further RVA strain (SLO/D110-15) was detected from a roe deer during 2015. The aim of this study was to provide a full genetic profile of the detected RVA strain from roe deer and to obtain additional information about zoonotic transmitted strains and potential reassortments between human rotavirus strains and zoonotic transmitted rotavirus strains. The next generation sequencing (NGS) analysis on Ion Torrent was performed and the whole genome sequence has been determined together with a phylogenetic analysis. RESULTS The whole genome sequence of SLO/D110-15 was obtained by NGS analyses on an IonTorrent platform. According to the genetic profile, the strain SLO/D110-15 clusters with the DS-1-like group and expresses the G8-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genome constellation. Phylogenetic analysis shows that this roe deer G8P[14] strain is most closely related to RVA strains found in sheep, cattle and humans. A human RVA strain with the same genotype profile was detected in 2009 in Slovenia. CONCLUSIONS The G8P[14] genotype has been found, for the first time, in deer, a newly described host from the order Artiodactyla for this RVA genotype. The finding of a rotavirus with the same genome segment constellation in humans indicates the possible zoonotic potential of this virus strain.
Collapse
Affiliation(s)
- Urska Jamnikar-Ciglenecki
- Institute of Food safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Andrej Kirbis
- Institute of Food safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Narrowing of the Diagnostic Gap of Acute Gastroenteritis in Children 0-6 Years of Age Using a Combination of Classical and Molecular Techniques, Delivers Challenges in Syndromic Approach Diagnostics. Pediatr Infect Dis J 2016; 35:e262-70. [PMID: 27276177 PMCID: PMC4987234 DOI: 10.1097/inf.0000000000001208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Twenty-five percent to 50% of acute gastroenteritis (AGE) cases remain etiologically undiagnosed. Our main aim was to determine the most appropriate list of enteric pathogens to be included in the daily diagnostics scheme of AGE, ensuring the lowest possible diagnostic gap. METHODS Two hundred ninety seven children ≤6 years of age, admitted to hospital in Slovenia, October 2011 to October 2012, with AGE, and 88 ≤6 years old healthy children were included in the study. A broad spectrum of enteric pathogens was targeted with molecular methods, including 8 viruses, 6 bacteria and 2 parasites. RESULTS At least one enteric pathogen was detected in 91.2% of cases with AGE and 27.3% of controls. Viruses were the most prevalent (82.5% and 15.9%), followed by bacteria (27.3% and 10.2%) and parasites (3.0% and 1.1%) in cases and controls, respectively. A high proportion (41.8%) of mixed infections was observed in the cases. For cases with undetermined etiology (8.8%), stool samples were analyzed with next generation sequencing, and a potential viral pathogen was detected in 17 additional samples (5.8%). CONCLUSIONS Our study suggests that tests for rotaviruses, noroviruses genogroup II, adenoviruses 40/41, astroviruses, Campylobacter spp. and Salmonella sp. should be included in the initial diagnostic algorithm, which revealed the etiology in 83.5% of children tested. The use of molecular methods in diagnostics of gastroenteritis is preferable because of their high sensitivity, specificity, fast performance and the possibility of establishing the concentration of the target. The latter may be valuable for assessing the clinical significance of the detected enteric, particularly viral pathogens.
Collapse
|
11
|
Al-Ayed MSZ, Asaad AM, Qureshi MA, Hawan AA. Epidemiology of group A rotavirus infection after the introduction of monovalent vaccine in the National Immunization Program of Saudi Arabia. J Med Virol 2016; 89:429-434. [PMID: 27531633 DOI: 10.1002/jmv.24664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the prevalence of group A rotavirus (RVA) gastroenteritis and the distribution of the RVA genotypes as well as to determine a possible change in the age of occurrence of the RVA infection in the first 2 years after Rotarix® vaccine introduction in Saudi Arabia. This descriptive study included 850 hospitalized children <5 years of age with acute gastroenteritis (AG) between October 2013 and September 2015. Overall, 78 (9.2%) children were positive for RVA during the study period with a positivity rate ranging from 11.3% in the first year of the study to 6.8% in the second year. G1 (47.4%) was the predominant G type, followed by G2 (28.2%) and G9 (10.3%). The most common P type was P[8] (69.2%) followed by P[4] (25.6%). The decrease in the prevalence of G1P[8] from 51% to 37.1% was associated with an increase in the prevalence of G2P[4] from 21.6% to 33.3% during the 2-year study period. This study demonstrated a significant decrease in the prevalence of RVA-AG cases in the first 2-year period after vaccine introduction, especially in the age group between 1 and 12 months, and a reduction in the circulation of G1P[6]. The parallel rise and spread of G2P[4] in post-vaccination period might pose an impact to long-term vaccine efficacy. Continued surveillance studies in different Saudi regions are crucial to document the effectiveness of Rotarix® vaccine and evaluate the potential emergence of rare/novel RVA genotypes. J. Med. Virol. 89:429-434, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Mohamed Ansar Qureshi
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
12
|
Bányai K, Gentsch J. Special issue on 'genetic diversity and evolution of rotavirus strains: possible impact of global immunization programs'. INFECTION GENETICS AND EVOLUTION 2015; 28:375-6. [PMID: 25471676 DOI: 10.1016/j.meegid.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jon Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Kim JS, Kim HS, Hyun J, Kim HS, Song W, Lee KM, Shin SH. Analysis of rotavirus genotypes in Korea during 2013: an increase in the G2P[4] genotype after the introduction of rotavirus vaccines. Vaccine 2014; 32:6396-402. [PMID: 25312273 DOI: 10.1016/j.vaccine.2014.09.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Group A rotavirus is the leading cause of acute gastroenteritis in children worldwide. We investigated G and P genotypes of group A rotavirus strains isolated from patients during 2013 and investigated which genotypes were identified from vaccinated patients. METHODS From January to December 2013, 2235 fecal specimens were tested for rotavirus antigen, of which 374 specimens (16.7%) showed positive results. Strains from 288 rotavirus-positive specimens were genotyped using PCR and sequencing, and individual patients' corresponding vaccine histories were investigated through the Korean Center for Disease Control website. RESULTS G2 (22.6%) and P[4] (24.0%) were the most frequently identified G and P genotypes, respectively; accordingly, G2P[4] (19.8%) was the most prevalent G/P genotype observed in this period. G4P[6] (10.1%) was the second most prevalent G/P genotype and was mostly detected in neonates. Other genotypes, G1P[8], G9P[8], G1P[6], and G3P[6], were also detected. Of 288 rotavirus-positive specimens, 48 specimens were obtained from previously vaccinated patients. G2P[4] was also the genotype most frequently isolated from vaccinated patients. VP7 epitope analysis of G1P[8] and G2P[4] strains showed at least one amino acid differences in comparison with Rotarix and RotaTeq vaccine strains. The genotypic distribution of rotavirus strains in Korea has been shown temporal and geographical differences. CONCLUSION This study showed that G2P[4] was the genotype most frequently isolated from both vaccinated and unvaccinated patients in Korea during 2013. However, it is unclear whether the change of predominant genotype is due to the effect of vaccination or due to natural variation.
Collapse
Affiliation(s)
- Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea.
| | - Jungwon Hyun
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea
| | - Kyu Man Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Republic of Korea
| | - Seon-Hee Shin
- Department of Pediatrics, Hallym University College of Medicine, Republic of Korea
| |
Collapse
|