1
|
Jesudason T, Sharomi O, Fleetwood K, Cheuk AL, Bermudez M, Schirrmacher H, Hauck C, Matthijnssens J, Hungerford D, Tordrup D, Carias C. Systematic literature review and meta-analysis on the prevalence of rotavirus genotypes in Europe and the Middle East in the post-licensure period. Hum Vaccin Immunother 2024; 20:2389606. [PMID: 39257173 PMCID: PMC11404614 DOI: 10.1080/21645515.2024.2389606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle East are limited because they do not include country-specific prevalence data. This study documents country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle East to enable more precise epidemiological modeling and contribute to the evidence-base about circulating rotavirus genotypes in the post-vaccination era. This study systematically searched PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype-specific surveillance data for countries in Europe and the Middle East published between 2006 and 2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta-analysis was conducted using the generic inverse variance method with arcsine transformation and generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the genotype prevalence by country across three date categories corresponding with rotavirus seasons: 2006-2010, 2011-2015, 2016-2021. A total of 7601 deduplicated papers were identified of which 88 studies were included in the final review. Rotavirus genotypes exhibited significant variability across regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P[8], being the most prevalent genotypes through different regions and time-periods. Uncommon genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the European Rotavirus Network. There was high genotype diversity with routinely identified genotypes being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and regions. Continued surveillance at the national and regional levels is relevant to support further research and inform public health decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological VirologyRega Institute, Leuven, Belgium
| | - Daniel Hungerford
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
2
|
Sashina TA, Velikzhanina EI, Morozova OV, Epifanova NV, Novikova NA. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch Virol 2023; 168:215. [PMID: 37524885 DOI: 10.1007/s00705-023-05838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016-2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.
Collapse
Affiliation(s)
- Tatiana A Sashina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation.
| | - E I Velikzhanina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - O V Morozova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N V Epifanova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N A Novikova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| |
Collapse
|
3
|
Karayel-Hacioglu I, Timurkan MO, Pellegrini F, Marton S, Gul B, Bányai K, Martella V, Alkan F. Whole-genome analysis of a rare G15P[21] group A rotavirus detected at a dairy cattle farm. J Gen Virol 2022; 103. [PMID: 36748637 DOI: 10.1099/jgv.0.001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group A rotaviruses (RVAs) are a major cause of severe enteritis in humans and animals. RVAs have been identified in several animal species and their genetic diversity, the segmented nature of their RNA genome and the ability to spill over from one species to another can generate new RVA strains. In this study, we investigated the genome constellations of an unusual, rare, bovine RVA strain, G15P[21], identified from a farm with neonatal diarrhoea of calves in 2006. In parallel, the genome constellations of other RVA strains with different G/P types identified from the same farm in the same time span (2006-2008) were analysed. The genome constellation of strain K53 was G15-P[21]-I2-R2-C2-M2-A13-N2-T9-E2-H3 and was similar, overall, to that of the other bovine RVA strains (G6/10-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3) with the exception of the NSP3 segment (T9 vs T6). This study describes RVA genomes with different genotype combinations isolated at a farm and also contributes to the understanding of the diversity and evaluation of rotavirus in a global context.
Collapse
Affiliation(s)
- Ilke Karayel-Hacioglu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Diskapi, 06110 Ankara, Turkey
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Bari, Italy
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária Krt 21, H-1143 Budapest, Hungary
| | - Buket Gul
- Department of Virology, Graduate School of Health Sciences, Ankara University, Diskapi, 06110 Ankara, Turkey
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária Krt 21, H-1143 Budapest, Hungary.,University of Veterinary Medicine, István Utca 2, H-1078 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Bari, Italy
| | - Feray Alkan
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Diskapi, 06110 Ankara, Turkey
| |
Collapse
|
4
|
Bonura F, Bányai K, Mangiaracina L, Bonura C, Martella V, Giammanco GM, De Grazia S. Emergence in 2017-2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily. Transbound Emerg Dis 2021; 69:813-835. [PMID: 33905178 DOI: 10.1111/tbed.14054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
Rotavirus A (RVA) is a major etiologic agent of gastroenteritis in children worldwide. Hospital-based surveillance of viral gastroenteritis in paediatric population in Palermo (Italy) from 2017 onwards revealed a sharp increase in G3P[8] RVAs, accounting for 71% of all the RVAs detected in 2019. This pattern had not been observed before in Italy, with G3 RVA usually being detected at rates lower than 3%. In order to investigate this unique epidemiological pattern, the genetic diversity of G3 RVAs identified during a 16-year long surveillance (2004-2019) was explored by systematic sequencing of the VP7 and VP4 genes and by whole genome sequencing of selected G3 strains, representative of the various RVA seasons. Sequence and phylogenetic analyses of the VP7 and VP4 genes revealed the emergence, in 2017 of reassortant equine-like G3P[8], which gradually replaced former G3P[8] strains. The G3P[8] circulating before 2017 showed a Wa-like constellation of genome segments while the G3P[8] that emerged in 2017 had a DS-1-like backbone. On direct inspection of the VP7 and VP4 antigenic epitopes, the equine-like G3P[8] strains possessed several amino acid variations in neutralizing regions compared with vaccine strains. The equine-like G3P[8] RVAs are a further example of the zoonotic impact of animal viruses on human health.
Collapse
Affiliation(s)
- Floriana Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROSAMI), Università di Palermo, Via del Vespro 133, Palermo, Italy
| | - Kristián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Leonardo Mangiaracina
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROSAMI), Università di Palermo, Via del Vespro 133, Palermo, Italy
| | - Celestino Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROSAMI), Università di Palermo, Via del Vespro 133, Palermo, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italia
| | - Giovanni M Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROSAMI), Università di Palermo, Via del Vespro 133, Palermo, Italy
| | - Simona De Grazia
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROSAMI), Università di Palermo, Via del Vespro 133, Palermo, Italy
| |
Collapse
|
5
|
Donato CM, Pingault N, Demosthenous E, Roczo-Farkas S, Bines JE. Characterisation of a G2P[4] Rotavirus Outbreak in Western Australia, Predominantly Impacting Aboriginal Children. Pathogens 2021; 10:350. [PMID: 33809709 PMCID: PMC8002226 DOI: 10.3390/pathogens10030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
In May, 2017, an outbreak of rotavirus gastroenteritis was reported that predominantly impacted Aboriginal children ≤4 years of age in the Kimberley region of Western Australia. G2P[4] was identified as the dominant genotype circulating during this period and polyacrylamide gel electrophoresis revealed the majority of samples exhibited a conserved electropherotype. Full genome sequencing was performed on representative samples that exhibited the archetypal DS-1-like genome constellation: G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and phylogenetic analysis revealed all genes of the outbreak samples were closely related to contemporary Japanese G2P[4] samples. The outbreak samples consistently fell within conserved sub-clades comprised of Hungarian and Australian G2P[4] samples from 2010. The 2017 outbreak variant was not closely related to G2P[4] variants associated with prior outbreaks in Aboriginal communities in the Northern Territory. When compared to the G2 component of the RotaTeq vaccine, the outbreak variant exhibited mutations in known antigenic regions; however, these mutations are frequently observed in contemporary G2P[4] strains. Despite the level of vaccine coverage achieved in Australia, outbreaks continue to occur in vaccinated populations, which pose challenges to regional areas and remote communities. Continued surveillance and characterisation of emerging variants are imperative to ensure the ongoing success of the rotavirus vaccination program in Australia.
Collapse
Affiliation(s)
- Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Nevada Pingault
- Department of Health Western Australia, Communicable Disease Control Directorate, Perth 6004, Australia;
| | - Elena Demosthenous
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville 3052, Australia
| |
Collapse
|
6
|
Sashina TA, Morozova OV, Epifanova NV, Novikova NA. Genotype constellations of the rotavirus A strains circulating in Nizhny Novgorod, Russia, 2017-2018. INFECTION GENETICS AND EVOLUTION 2020; 85:104578. [PMID: 33010418 DOI: 10.1016/j.meegid.2020.104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Currently, the full-genome-based classification is widely used to investigate rotavirus A (RVA) strains found in different countries around the world. However, the information on the full genotypes of rotaviruses circulating in Russia is limited. Using partial sequencing, this study determined the full genotype constellations of 15 RVA strains in total commonly detected in Nizhny Novgorod (European part of Russia) in 2017-2018, three from each of the following genotypes G1P[8], G4P[8], and G9P[8] and six from G2P[4]. There were two intergenogroup mono-reassortants possessing an identical genotype constellation of G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 with the DS-1-like NSP4 gene of probably local origin. A variety of subgenotype lineages and their combinations of Wa-like rotaviruses and genetic heterogeneity among G9P[8] and G1P[8] strains were shown on the basis of phylogenetic analysis of each gene. Moreover, two distinct co-circulating variants that differed in all 11 genome segments were found among DS-1-like rotaviruses.
Collapse
Affiliation(s)
- Tatiana A Sashina
- Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation 603 950, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russia.
| | - Olga V Morozova
- Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation 603 950, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russia
| | - Natalia V Epifanova
- Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation 603 950, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russia
| | - Nadezhda A Novikova
- Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation 603 950, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Malik YS, Bhat S, Dar PS, Sircar S, Dhama K, Singh RK. Evolving Rotaviruses, Interspecies Transmission and Zoonoses. Open Virol J 2020. [DOI: 10.2174/1874357902014010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Evolutionary biology has become one of the imperative determinants explaining the origin of several viruses which were either identified decades back or are recognized lately using metagenomic approaches. Several notifiable emerging viruses like influenza, Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), Ebola, Hendra, Nipah and Zika viruses have become the leading causes of epidemics and losses thereto in both human and animals. The sufferings are higher due to gastroenteritis causing viruses including Astrovirus, Calicivirus, Enterovirus, Kobuvirus Picobirnavirus, Sapelovirus, Teschovirus, and many more. Notably, the majority of the emerging viruses enclose RNA genome and these are more prone for insertions/mutation in their genome, leading to evolving viral variants. Rapidity in viral evolution becomes a big hitch in the development process of successful vaccines or antiviral. The prominent gastroenteric virus is rotavirus, which is a double-stranded RNA virus with a segmented nature of genome enabling higher reassortment events and generates unusual strains with unique genomic constellations derivative of parental rotavirus strains. Although most rotaviruses appear to be host restricted, the interspecies transmission of rotaviruses has been well documented across the globe. The nocturnal bats have been accepted harbouring many pathogenic viruses and serving as natural reservoirs. Indications are that bats can also harbour rotaviruses, and help in virus spread. The zooanthroponotic and anthropozoonotic potential of rotaviruses has significant implications for rotavirus epidemiology. Hitherto reports confirm infection of humans through rotaviruses of animal origin, exclusively via direct transmission or through gene reassortments between animal and human strain of rotaviruses. There is a need to understand the ecology and evolutionary biology of emerging rotavirus strains to design effective control programs.
Collapse
|
8
|
High prevalence of G3 rotavirus in hospitalized children in Rawalpindi, Pakistan during 2014. PLoS One 2018; 13:e0195947. [PMID: 29708975 PMCID: PMC5927433 DOI: 10.1371/journal.pone.0195947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022] Open
Abstract
Rotavirus A species (RVA) is the leading cause of severe diarrhea among children in both developed and developing countries. Among different RVA G types, humans are most commonly infected with G1, G2, G3, G4 and G9. During 2003-2004, G3 rotavirus termed as "new variant G3" emerged in Japan that later disseminated to multiple countries across the world. Although G3 rotaviruses are now commonly detected globally, they have been rarely reported from Pakistan. We investigated the genetic diversity of G3 strains responsible RVA gastroenteritis in children hospitalized in Rawalpindi, Pakistan during 2014. G3P[8] (18.3%; n = 24) was detected as the most common genotype causing majority of infections in children less than 06 months. Phylogenetic analysis of Pakistani G3 strains showed high amino acid similarity to "new variant G3" and G3 strains reported from China, Russia, USA, Japan, Belgium and Hungary during 2007-2012. Pakistani G3 strains belonged to lineage 3 within sub-lineage 3d, containing an extra N-linked glycosylation site compared to the G3 strain of RotaTeqTM. To our knowledge, this is the first report on the molecular epidemiology of G3 rotavirus strains from Pakistan and calls for immediate response measures to introduce RV vaccine in the routine immunization program of the country on priority.
Collapse
|
9
|
Increasing predominance of G8P[8] species A rotaviruses in children admitted to hospital with acute gastroenteritis in Thailand, 2010-2013. Arch Virol 2018; 163:2165-2178. [DOI: 10.1007/s00705-018-3848-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
|
10
|
Tatte VS, Chaphekar D, Gopalkrishna V. Full genome analysis of rotavirus G9P[8] strains identified in acute gastroenteritis cases reveals genetic diversity: Pune, western India. J Med Virol 2017; 89:1354-1363. [DOI: 10.1002/jmv.24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/29/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Deepa Chaphekar
- Enteric Viruses Group; National Institute of Virology; Pune India
| | | |
Collapse
|
11
|
Karayel I, Fehér E, Marton S, Coskun N, Bányai K, Alkan F. Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Vet Microbiol 2017; 201:7-13. [PMID: 28284625 PMCID: PMC7117445 DOI: 10.1016/j.vetmic.2016.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022]
Abstract
The circulation of G8 RVA strains in calves with diarrhea detected first time in Turkey. First report on whole genome of G8P[5] RVA strains from calves with diarrhea in Turkey. VP7 gene of the both Turkish bovine RVA strains showed the closest with human RVA strains detected in Europe and Africa. The genotype constellation of the strains is G8-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The findings raise provocative questions related to strain-specific vaccine effectiveness in herds where commercial RVA vaccines are routinely utilized.
Group A rotaviruses (RVA) are regarded as major enteric pathogens of large ruminants, including cattle. Rotavirus vaccines administered to pregnant cows are commonly used to provide passive immunity that protects newborn calves from the clinical disease. In this study we report the detection of RVA from calves with severe diarrhea in a herd regularly vaccinated to prevent enteric infections including RVA. Diarrheic disease was observed in newborn calves aged 4–15 days, with high morbidity and mortality rates, but no diarrhea was seen in adult animals. Rotavirus antigen was detected by enzyme-immunoassay in the intestinal content or the fecal samples of all examined animals. Besides RVA, bovine coronavirus and bovine enteric calicivirus were detected in some samples. Selected RVA strains were characterized by whole genome sequencing. Two strains, RVA/Cow-wt/TUR/Amasya-1/2015/G8P[5] and RVA/Cow-wt/TUR/Amasya-2/2015/G8P[5] were genotyped as G8-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and showed >99% nucleotide sequence identity among themselves. This genomic constellation is fairly common among bovine RVA strains; however, phylogenetic analysis of the G8 VP7 gene showed close genetic relationship to some European human RVA strains (up to 98.4% nt identity). Our findings is the first indication regarding the circulation of G8 RVA strains in Turkey. Given that the administered RVA vaccines contained type G6 and G10 VP7 antigens some concerns raised with regard to the level of heterotypic protection elicited by the vaccine strains against circulating bovine G8 RVA strains. Enhancement of surveillance of circulating RVA strains in calves across Turkey is needed to support ongoing vaccination programs.
Collapse
Affiliation(s)
- Ilke Karayel
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Diskapi, 06110 Ankara, Turkey
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, P.O. Box 18, H-1581 Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, P.O. Box 18, H-1581 Budapest, Hungary
| | - Nüvit Coskun
- Kafkas University, Faculty of Veterinary Medicine, Department of Virology, Kars, Turkey
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, P.O. Box 18, H-1581 Budapest, Hungary
| | - Feray Alkan
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Diskapi, 06110 Ankara, Turkey.
| |
Collapse
|
12
|
Whole genome sequencing of a rare rotavirus from archived stool sample demonstrates independent zoonotic origin of human G8P[14] strains in Hungary. Virus Res 2016; 227:96-103. [PMID: 27671785 DOI: 10.1016/j.virusres.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022]
Abstract
Genotype P[14] rotaviruses in humans are thought to be zoonotic strains originating from bovine or ovine host species. Over the past 30 years only few genotype P[14] strains were identified in Hungary totaling<0.1% of all human rotaviruses whose genotype had been determined. In this study we report the genome sequence and phylogenetic analysis of a human genotype G8P[14] strain, RVA/Human-wt/HUN/182-02/2001/G8P[14]. The whole genome constellation (G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) of this strain was shared with another Hungarian zoonotic G8P[14] strain, RVA/Human-wt/HUN/BP1062/2004/G8P[14], although phylogenetic analyses revealed the two rotaviruses likely had different progenitors. Overall, our findings indicate that human G8P[14] rotavirus detected in Hungary in the past originated from independent zoonotic events. Further studies are needed to assess the public health risk associated with infections by various animal rotavirus strains.
Collapse
|
13
|
Arana A, Montes M, Jere KC, Alkorta M, Iturriza-Gómara M, Cilla G. Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. INFECTION GENETICS AND EVOLUTION 2016; 44:137-144. [PMID: 27370571 DOI: 10.1016/j.meegid.2016.06.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/30/2022]
Abstract
In March 2015, an atypical G3P[8] rotavirus with an equine-like VP7 gene was detected in Gipuzkoa (Basque Country, Spain) and spread contributing significantly to the seasonal epidemic. The strain was identified in fecal samples collected from 68 patients, mainly children from rural and urban settings with acute gastroenteritis, representing 14.9% of the 455 rotavirus strains genotyped between July 2014 and June 2015. Seven patients (10.3%) were hospitalized. Full genome analysis of six of these strains revealed a DS-1-like genotype constellation, G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and showed that most genome segments shared the highest nucleotide sequence identity with strains isolated in Japan, Thailand, Australia and the Philippines. The strains of Gipuzkoa were similar to novel G3P[8] reassortant rotaviruses with an equine-like VP7 gene and a DS-1-like genetic backbone that emerged in the Asia-Pacific Region in 2013. The study highlights the circulation of these atypical rotaviruses outside the Asia-Pacific Region of origin, and their emergence in a European Region. Due to their unusual genotype constellation, these strains pose a challenge for the rotavirus strain surveillance, since G-/P-typing, the most commonly used classification system, cannot identify this type of intergenogroup reassortants.
Collapse
Affiliation(s)
- Ainara Arana
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Milagrosa Montes
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | - Khuzwayo C Jere
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Miriam Alkorta
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Miren Iturriza-Gómara
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Gustavo Cilla
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain.
| |
Collapse
|
14
|
De Grazia S, Dóró R, Bonura F, Marton S, Cascio A, Martella V, Bányai K, Giammanco GM. Complete genome analysis of contemporary G12P[8] rotaviruses reveals heterogeneity within Wa-like genomic constellation. INFECTION GENETICS AND EVOLUTION 2016; 44:85-93. [PMID: 27353490 DOI: 10.1016/j.meegid.2016.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
G12 rotaviruses are globally emergent rotaviruses causing severe childhood gastroenteritis. Little is known about the evolution and diversity of G12P[8] rotaviruses and the possible role that widespread vaccine use, globally, has had on their emergence. In Sicily, Italy, surveillance activity for rotaviruses has been conducted uninterruptedly since 1985, thus representing a unique observatory for the study of human rotaviruses in the pre- and post-vaccine era. G12 rotaviruses were first detected only in 2012 and between 2012 and 2014 they accounted for 8.7% of all rotavirus-associated infections among children, with peaks of 27.8% in 2012/2013 and 21% in 2014. We determined and analyzed the full-genome of 22 G12P[8] rotaviruses collected during the 2012-2014. Although all G12P[8] rotaviruses exhibited a typical Wa-like genotype constellation (G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), phylogenetic analysis allowed distinguishing either two or three (sub)lineages in each genome segment. On the basis of the segregation patterns into lineages/sublineages, 20 G12P[8] rotaviruses could be grouped into three stable major genomic sub-constellations, whilst two strains displayed unique genome architectures, likely due to ressortment with co-circulating strains. Altogether, these findings indicate that the onset and prolonged circulation of G12 rotaviruses was due to repeated introductions of different G12 rotaviruses circulating globally. Importantly, as regional rotavirus vaccination was initiated in 2012 reaching a 45% coverage in newborns in 2014, a correlation between the appearance and spread of G12 rotaviruses and the enacted vaccination program could not be drawn. Constant epidemiologic surveillance remains important to monitor the epidemiological dynamics of human rotaviruses.
Collapse
Affiliation(s)
- Simona De Grazia
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Renáta Dóró
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Floriana Bonura
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Szilvia Marton
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio Cascio
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Giovanni M Giammanco
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Complete Genome Sequence of a Genotype G23P[37] Pheasant Rotavirus Strain Identified in Hungary. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00119-16. [PMID: 27034484 PMCID: PMC4816612 DOI: 10.1128/genomea.00119-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the genomic properties of a rotavirus A strain isolated from diarrheic pheasant poults in Hungary in 2015. Sequence analyses revealed a shared genomic constellation (G23-P[37]-I4-R4-C4-M4-A16-N10-T4-E4-H4) and close relationship (range of nucleotide sequence similarity: VP2, 88%; VP1 and NSP4, 98%) with another pheasant rotavirus strain isolated previously in Germany.
Collapse
|
16
|
Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Tsuji T, Yoshikawa T, Tharmaphornpilas P, Sangkitporn S, Taniguchi K. Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-Like G1P[8] Rotavirus Strains. PLoS One 2016; 11:e0148416. [PMID: 26845439 PMCID: PMC4742054 DOI: 10.1371/journal.pone.0148416] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/17/2016] [Indexed: 12/02/2022] Open
Abstract
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| | | | - Ratigorn Guntapong
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Somchai Sangkitporn
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
17
|
Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD. Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J Gen Virol 2015; 97:403-410. [PMID: 26588920 DOI: 10.1099/jgv.0.000352] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During 2013, a novel equine-like G3P[8] rotavirus emerged as the dominant strain in Australian children with severe rotavirus gastroenteritis. Full genome analysis demonstrated that the strain was an inter-genogroup reassortant, containing an equine-like G3 VP7, a P[8] VP4 and a genogroup 2 backbone I2-R2-C2-M2-A2-N2-T2-E2-H2. The genome constellation of the equine-like G3P[8] was distinct to Australian and global G3P[8] strains. Phylogenetic analysis demonstrated a genetic relationship to multiple gene segments of Japanese strains RVA/JPN/S13-30/2013/G3P[4] and RVA/Human-wt/JPN/HC12016/2012/G1P[8]. The Australian equine-like G3P[8] strain displayed a distinct VP7 antigenic profile when compared with the previously circulating Australian G3P[8] strains. Identification of similar genes in strains from several geographical regions suggested the equine-like G3P[8] strain was derived by multiple reassortment events between globally co-circulating strains from both human and animal sources. This study reinforces the dynamic nature of rotavirus strains and illustrates the potential for novel human/animal reassortant strains to emerge within the human population.
Collapse
Affiliation(s)
- Daniel Cowley
- The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Celeste M Donato
- La Trobe University, Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | - Carl D Kirkwood
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,La Trobe University, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Haga K, Katayama K, Kato T, Ouchi Y, Kurahashi H, Tsuji T, Sangkitporn S, Taniguchi K. Emergence and Characterization of Unusual DS-1-Like G1P[8] Rotavirus Strains in Children with Diarrhea in Thailand. PLoS One 2015; 10:e0141739. [PMID: 26540260 PMCID: PMC4634990 DOI: 10.1371/journal.pone.0141739] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| | | | - Ratigorn Guntapong
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Somchai Sangkitporn
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
19
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-1350. [PMID: 26428261 DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Group A rotavirus (Rotavirus A, RVA) is the main cause of acute dehydrating diarrhea in humans and numerous animal species. RVA shows vast diversity and a variety of human strains share genetic and antigenic features with animal origin RVA strains. This finding suggests that interspecies transmission is an important mechanism of rotavirus evolution and contributes to the diversity of human RVA strains. RVA is responsible for half a million deaths and several million hospitalizations worldwide. Globally, two rotavirus vaccines are available for routine use in infants. These vaccines show a great efficacy profile and induce protective immunity against various rotavirus strains. However, little is known about the long-term evolution and epidemiology of RVA strains under selective pressure related to vaccine use. Continuous strain surveillance in the post-vaccine licensure era is needed to help better understand mechanisms that may affect vaccine effectiveness.
Collapse
Affiliation(s)
- Renáta Dóró
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Szilvia L Farkas
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- b 2 Department of Veterinary Public Health, University of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | - Krisztián Bányai
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
20
|
Bányai K, Gentsch J. Special issue on 'genetic diversity and evolution of rotavirus strains: possible impact of global immunization programs'. INFECTION GENETICS AND EVOLUTION 2015; 28:375-6. [PMID: 25471676 DOI: 10.1016/j.meegid.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jon Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
21
|
De Grazia S, Giammanco GM, Dóró R, Bonura F, Marton S, Cascio A, Martella V, Bányai K. Identification of a multi-reassortant G12P[9] rotavirus with novel VP1, VP2, VP3 and NSP2 genotypes in a child with acute gastroenteritis. INFECTION GENETICS AND EVOLUTION 2015. [PMID: 26205691 DOI: 10.1016/j.meegid.2015.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The G12 rotavirus genotype is globally emerging to cause severe gastroenteritis in children. Common G12 rotaviruses have either a Wa-like or DS-1-like genome constellation, while some G12 strains may have unusual genome composition. In this study, we determined the full-genome sequence of a G12P[9] strain (ME848/12) detected in a child hospitalized with acute gastroenteritis in Italy in 2012. Strain ME848/12 showed a complex genetic constellation (G12-P[9]-I17-R12-C12-M11-A12-N12-T7-E6-H2), likely derived from multiple reassortment events, with the VP1, VP2, VP3 and NSP2 genes being established as novel genotypes R12, C12, M11 and N12, respectively. Gathering sequence data on human and animal rotaviruses is important to trace the complex evolutionary history of atypical RVAs.
Collapse
Affiliation(s)
- Simona De Grazia
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Giovanni M Giammanco
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Renáta Dóró
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Floriana Bonura
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Szilvia Marton
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio Cascio
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
22
|
|
23
|
Marton S, Deák J, Dóró R, Csata T, Farkas SL, Martella V, Bányai K. Reassortant human group C rotaviruses in Hungary. INFECTION GENETICS AND EVOLUTION 2015; 34:410-4. [PMID: 25958136 DOI: 10.1016/j.meegid.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/09/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judith Deák
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Renáta Dóró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tünde Csata
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary.
| |
Collapse
|
24
|
Ndze VN, Esona MD, Achidi EA, Gonsu KH, Dóró R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. INFECTION GENETICS AND EVOLUTION 2014; 28:537-60. [DOI: 10.1016/j.meegid.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022]
|