1
|
Tatsi EB, Koukou DM, Dellis C, Dourdouna MM, Efthymiou V, Michos A, Syriopoulou V. Epidemiological study of unusual rotavirus strains and molecular characterization of emerging P[14] strains isolated from children with acute gastroenteritis during a 15-year period. Arch Virol 2023; 168:149. [PMID: 37129790 PMCID: PMC10151219 DOI: 10.1007/s00705-023-05769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Rotavirus group A (RVA) is characterized by molecular and epidemiological diversity. To date, 42 G and 58 P RVA genotypes have been identified, some of which, like P[14], have a zoonotic origin. In this study, we describe the epidemiology of unusual RVA genotypes and the molecular characteristics of P[14] strains. Fecal samples from children ≤ 16 years of age with acute gastroenteritis (AGE) who were hospitalized during 2007-2021 in Greece were tested for RVA by immunochromatography. Positive RVA samples were G and P genotyped, and part of the VP7 and VP4 genes were sequenced by the Sanger method. Epidemiological data were also recorded. Phylogenetic analysis of P[14] was performed using MEGA 11 software. Sixty-two (1.4%) out of 4427 children with RVA AGE were infected with an unusual G (G6/G8/G10) or P (P[6]/P[9]/P[10]/P[11]/P[14]) genotype. Their median (IQR) age was 18.7 (37.3) months, and 67.7% (42/62) were males. None of the children were vaccinated against RVA. P[9] (28/62; 45.2%) was the most common unusual genotype, followed by P[14] (12/62; 19.4%). In the last two years, during the period of the COVID-19 pandemic, an emergence of P[14] was observed (5/12, 41.6%) after an 8-year absence. The highest prevalence of P[14] infection was seen in the spring (91.7%). The combinations G8P[14] (41.7%), G6P[14] (41.7%), and G4P[14] (16.6%) were also detected. Phylogenetic analysis showed a potential evolutionary relationship of three human RVA P[14] strains to a fox strain from Croatia. These findings suggest a possible zoonotic origin of P[14] and interspecies transmission between nondomestic animals and humans, which may lead to new RVA genotypes with unknown severity.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece.
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece.
| | - Dimitra-Maria Koukou
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Charilaos Dellis
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Maria-Myrto Dourdouna
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| |
Collapse
|
2
|
Wu FT, Liu LTC, Jiang B, Kuo TY, Wu CY, Liao MH. Prevalence and diversity of rotavirus A in pigs: Evidence for a possible reservoir in human infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105198. [PMID: 34968762 DOI: 10.1016/j.meegid.2021.105198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Rotavirus A (RVA) are a group of diverse viruses causing acute gastroenteritis (AGE) in humans and animals. Zoonotic transmission is an important mechanism for rotavirus evolution and strain diversity in humans, but the extent of pigs as a major reservoir for human infection is not clear. METHODS AND FINDINGS We have surveyed 153 pig farms across Taiwan with a total of 4588 porcine stool samples from three age groups from 2014 to 2017. Nursing piglets (less than one month of age) had higher detection rate for rotavirus than older age groups. Five VP7 (G) genotypes and 5 VP4 (P) genotypes were found in a total of 14 different G/P genotype combinations. In addition, porcine RVA strains had 2 NSP4 (E) genotypes and 3 VP6 (I) genotypes. A P[3]-like genotype was also discovered among strains collected in 2016 and 2017. CONCLUSIONS Most of the genes from Taiwanese porcine strains clustered with each other and the lineages formed by these strains were distinct from the sequences of numerous regional variants or globally circulating porcine strains, suggesting an independent evolutionary history for Taiwanese rotavirus genotypes. The close relationship among porcine RVA strains and some unique porcine-like genotypes detected sporadically among human children in swine farms illustrates that pigs might serve as a reservoir for potential zoonotic transmission and novel genotype evolution in Taiwan's insular environment.
Collapse
Affiliation(s)
- Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| | - Luke Tzu-Chi Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ting-Yu Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ching-Yi Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ming-Huei Liao
- College of Veterinary Medicine, National Pingtung University of Science Technology, Taiwan; Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taiwan
| |
Collapse
|
3
|
Tsugawa T, Fujii Y, Akane Y, Honjo S, Kondo K, Nihira H, Kimura H, Kawasaki Y. Molecular characterization of the first human G15 rotavirus strain of zoonotic origin from the bovine species. J Gen Virol 2021; 102. [PMID: 33847554 DOI: 10.1099/jgv.0.001581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVAs) infect a wide variety of mammalian and avian species. Animals act as a potential reservoir to RVA human infections by direct virion transmission or by contributing genes to reassortants. Here, we report the molecular characterization of a rare human RVA strain Ni17-46 with a genotype G15P[14], isolated in Japan in 2017 during rotavirus surveillance in a paediatric outpatient clinic. The genome constellation of this strain was G15-P[14]-I2-R2-C2-M2-A13-N2-T9-E2-H3. This is the first report of an RVA with G15 genotype in humans, and sequencing and phylogenetic analysis results suggest that human infection with this strain has zoonotic origin from the bovine species. Given the fact that this strain was isolated from a patient with gastroenteritis and dehydration symptoms, we must take into account the virulence of this strain in humans.
Collapse
Affiliation(s)
- Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshiki Fujii
- Department of Virology Ⅱ, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sunagawa City Hospital, Sunagawa, Hokkaido, Japan
| | | | - Hirokazu Kimura
- Graduate School of Health Science, Gunma Paz University, Takasaki, Gunma, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Molecular characterization of unusual G10P[33], G6P[14] genomic constellations of group A rotavirus and evidence of zooanthroponosis in bovines. INFECTION GENETICS AND EVOLUTION 2020; 84:104385. [PMID: 32522623 DOI: 10.1016/j.meegid.2020.104385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
Group A rotaviruses (RVA) are a major cause of diarrhea in neonatal calves and children. The present study examined G/P combinations and genetic characteristics of RVAs in diarrheic bovine calves in Western India. RVAs were detected in 27 samples (17.64%) with a predominance of G10P[11] (51.85%), followed by previously unreported genomic constellations, G6P[14] (14.81%), and, G6P[4] (7.40%) and G10P[33] (3.70%). Sequencing and phylogenetic analysis revealed circulation of G10 (Lineage-5), G6 (Lineage-2), P[11] (Lineage-3), P[14] (proposed Lineage-8) and P[4] (Lineage-3) genotypes. The predominant G10P[11] strains were typical bovine strains and exhibited genotypic homogeneity. The rare, G10P[33] strain, had VP7 and VP4 genes of bovine origin but, a resemblance of the VP6 gene with simian strain indicated possible reassortment between bovine and simian (SA11-like) strains. The VP6 and VP7 genes of two rare strains, G6P[14] and G6P[4], were identical to those of bovine stains, but the VP4 was closely related to those of the human-bovine like and human strains, respectively. Additionally, in the VP4 gene phylogenetic tree, Indian P[14] strains constituted a closely related genetic cluster distinct from the other P[14] strains. Hence Lineage-8 was proposed for them. These findings indicated that bovines could serve as a source for anthropozoonotic transmission of G6P[14] strains while zooanthroponotic transmission followed by reassortment with human strain gave rise to G6P[4] strains. The observations of a present study reinforce the potential of rotaviruses to cross the host-species barrier and undergo reassortant to increase genetic diversity which, necessitates their continuous surveillance for development and optimization of prevention strategies against zoonotic RVAs.
Collapse
|
5
|
Nirwati H, Donato CM, Ikram A, Aman AT, Wibawa T, Kirkwood CD, Soenarto Y, Pan Q, Hakim MS. Phylogenetic and immunoinformatic analysis of VP4, VP7, and NSP4 genes of rotavirus strains circulating in children with acute gastroenteritis in Indonesia. J Med Virol 2019; 91:1776-1787. [PMID: 31243786 DOI: 10.1002/jmv.25527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
Rotavirus is a major cause of diarrhea in Indonesian children. However, rotavirus vaccines have not been introduced in the national immunization program of Indonesia. Understanding the genetic diversity and conserved antigenic regions of circulating strains are therefore essential to assess the potential efficacy of rotavirus vaccines. We collected fecal samples from hospitalized children less than 5 years of age with acute diarrhea. Rotavirus genotyping was performed by reverse transcriptase polymerase chain reaction, followed by sequencing of the VP4, VP7, and NSP4 genes of representative strains. Phylogenetic analysis was performed to investigate their relationship with globally circulating strains. Conservational analysis, immunoinformatics, and epitope mapping in comparison to vaccine strains were also performed. The sequence analyses showed that differences of multiple amino acid residues existed between the VP4, VP7, and NSP4 antigenic regions of the vaccine strains and the Indonesian isolates. However, many predicted conserved epitopes with higher antigenicity were observed in the vaccine and Indonesian strains, conferring the importance of these epitopes. The identified epitopes showed a higher potential of rotavirus vaccine to be employed in Indonesia. It could also be helpful to inform the design of a peptide vaccine based on the conserved regions and epitopes in the viral proteins.
Collapse
Affiliation(s)
- Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Celeste M Donato
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Enteric Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Aqsa Ikram
- Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Qiuwei Pan
- Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Quaye O, Roy S, Rungsrisuriyachai K, Esona MD, Xu Z, Tam KI, Banegas DJC, Rey-Benito G, Bowen MD. Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras. Mem Inst Oswaldo Cruz 2018; 113:9-16. [PMID: 29211103 PMCID: PMC5719537 DOI: 10.1590/0074-02760170083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although first detected in animals, the rare rotavirus strain G10P[14] has
been sporadically detected in humans in Slovenia, Thailand, United Kingdom
and Australia among other countries. Earlier studies suggest that the
strains found in humans resulted from interspecies transmission and
reassortment between human and bovine rotavirus strains. OBJECTIVES In this study, a G10P[14] rotavirus genotype detected in a human stool sample
in Honduras during the 2010-2011 rotavirus season, from an unvaccinated
30-month old boy who reported at the hospital with severe diarrhea and
vomiting, was characterised to determine the possible evolutionary origin of
the rare strain. METHODS For the sample detected as G10P[14], 10% suspension was prepared and used for
RNA extraction and sequence independent amplification. The amplicons were
sequenced by next-generation sequencing using the Illumina MiSeq 150 paired
end method. The sequence reads were analysed using CLC Genomics Workbench
6.0 and phylogenetic trees were constructed using PhyML version 3.0. FINDINGS The next generation sequencing and phylogenetic analyses of the 11-segmented
genome of the G10P[14] strain allowed classification as
G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6,
NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6,
which suggests that multiple reassortment events occurred in the evolution
of the strain. The phylogenetic analyses and genetic distance calculations
showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered
predominantly with bovine strains. NSP2 and VP2 genes were most closely
related to simian and human strains, respectively, and NSP5 was most closely
related to a rhesus strain. MAIN CONCLUSIONS The genetic characterisation of the G10P[14] strain from Honduras suggests
that its genome resulted from multiple reassortment events which were
possibly mediated through interspecies transmissions.
Collapse
Affiliation(s)
- Osbourne Quaye
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA.,University of Ghana, Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, Legon, Accra, Ghana
| | - Sunando Roy
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA
| | - Kunchala Rungsrisuriyachai
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA
| | - Mathew D Esona
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA
| | - Ziqian Xu
- China Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Ka Ian Tam
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA
| | | | | | - Michael D Bowen
- Centers for Disease Control and Prevention, Gastroenteritis and Respiratory Viruses Laboratory Branch, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Navarro R, Aung MS, Cruz K, Ketzis J, Gallagher CA, Beierschmitt A, Malik YS, Kobayashi N, Ghosh S. Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A. INFECTION GENETICS AND EVOLUTION 2017; 49:21-31. [DOI: 10.1016/j.meegid.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
|
8
|
Esona MD, Roy S, Rungsrisuriyachai K, Sanchez J, Vasquez L, Gomez V, Rios LA, Bowen MD, Vazquez M. Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic. J Gen Virol 2017; 98:134-142. [PMID: 27983480 DOI: 10.1099/jgv.0.000688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the genome of a novel human triple-recombinant G4P[6-8_R] mono-reassortant strain identified in a stool sample from the Dominican Republic during routine facility-based rotavirus strain surveillance. The strain was designated as RVA/Human-wt/DOM/2013840364/2013/G4P[6-8_R], with a genomic constellation of G4-P[6-8_R]-I1-R1-C1-M1-(A1-A8_R)-N1-(T1-T7_R)-E1-H1. Recombinant gene segments NSP1 and NSP3 were generated as a result of recombination between genogroup 1 rotavirus A1 human strain and a genotype A8 porcine strain and between genogroup 1 rotavirus T1 human strain and a genotype T7 bovine strain, respectively. Analyses of the RNA secondary structures of gene segment VP4, NSP1 and NSP3 showed that all the recombinant regions appear to start in a loop (single-stranded) region and terminate in a stem (double-stranded) structure. Also, the VP7 gene occupied lineage VII within the G4 genotypes consisting of mostly porcine or porcine-like G4 strains, suggesting the occurrence of reassortment. The remaining gene segments clustered phylogenetically with genogroup 1 strains. This exchange of whole or partial genetic materials between rotaviruses by recombination and reassortment contributes directly to their diversification, adaptation and evolution.
Collapse
Affiliation(s)
- Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sunando Roy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jacqueline Sanchez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | - Lina Vasquez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | - Virgen Gomez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | | | - Michael D Bowen
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
9
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
10
|
Ward ML, Mijatovic-Rustempasic S, Roy S, Rungsrisuriyachai K, Boom JA, Sahni LC, Baker CJ, Rench MA, Wikswo ME, Payne DC, Parashar UD, Bowen MD. Molecular characterization of the first G24P[14] rotavirus strain detected in humans. INFECTION GENETICS AND EVOLUTION 2016; 43:338-42. [PMID: 27237948 DOI: 10.1016/j.meegid.2016.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/15/2022]
Abstract
Here we report the genome of a novel rotavirus A (RVA) strain detected in a stool sample collected during routine surveillance by the Centers for Disease Control and Prevention's New Vaccine Surveillance Network. The strain, RVA/human-wt/USA/2012741499/2012/G24P[14], has a genomic constellation of G24-P[14]-I2-R2-C2-M2-A3-N2-T9-E2-H3. The VP2, VP3, VP7 and NSP3 genes cluster phylogenetically with bovine strains. The other genes occupy mixed clades containing animal and human strains. Strain RVA/human-wt/USA/2012741499/2012/G24P[14] most likely is the product of interspecies transmission and reassortment events. This is the second report of the G24 genotype and the first report of the G24P[14] genotype combination in humans.
Collapse
Affiliation(s)
- M Leanne Ward
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Slavica Mijatovic-Rustempasic
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sunando Roy
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kunchala Rungsrisuriyachai
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Julie A Boom
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | | | - Carol J Baker
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Marcia A Rench
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Mary E Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
11
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-1350. [PMID: 26428261 DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Group A rotavirus (Rotavirus A, RVA) is the main cause of acute dehydrating diarrhea in humans and numerous animal species. RVA shows vast diversity and a variety of human strains share genetic and antigenic features with animal origin RVA strains. This finding suggests that interspecies transmission is an important mechanism of rotavirus evolution and contributes to the diversity of human RVA strains. RVA is responsible for half a million deaths and several million hospitalizations worldwide. Globally, two rotavirus vaccines are available for routine use in infants. These vaccines show a great efficacy profile and induce protective immunity against various rotavirus strains. However, little is known about the long-term evolution and epidemiology of RVA strains under selective pressure related to vaccine use. Continuous strain surveillance in the post-vaccine licensure era is needed to help better understand mechanisms that may affect vaccine effectiveness.
Collapse
Affiliation(s)
- Renáta Dóró
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Szilvia L Farkas
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- b 2 Department of Veterinary Public Health, University of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | - Krisztián Bányai
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
12
|
Bányai K, Gentsch J. Special issue on 'genetic diversity and evolution of rotavirus strains: possible impact of global immunization programs'. INFECTION GENETICS AND EVOLUTION 2015; 28:375-6. [PMID: 25471676 DOI: 10.1016/j.meegid.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jon Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Full-Genome Sequence of the First G8P[14] Rotavirus Strain Detected in the United States. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00677-15. [PMID: 26089432 PMCID: PMC4472909 DOI: 10.1128/genomea.00677-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This is a report of the complete genomic sequence of a rare rotavirus group A G8-P[14]-I2-R3-C2-M2-A3-N2-T6-E2-H3 strain detected in a stool sample from a 57-year-old subject.
Collapse
|
14
|
Full genomic characterization and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain detected in a sample from Guatemala. INFECTION GENETICS AND EVOLUTION 2015; 33:206-11. [PMID: 25952569 DOI: 10.1016/j.meegid.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 02/02/2023]
Abstract
We report the genomic characterization of a rare human G8P[14] rotavirus strain, identified in a stool sample from Guatemala (GTM) during routine rotavirus surveillance. This strain was designated as RVA/Human-wt/GTM/2009726790/2009/G8P[14], with a genomic constellation of G8-P[14]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP4 gene occupied lineage VII within the P[14] genotype. Phylogenetic analysis of each genome segment revealed close relatedness to several zoonotic simian, guanaco and bovine strains. Our findings suggest that strain RVA/Human-wt/GTM/2009726790/2009/G8P[14] is an example of a direct zoonotic transmission event. The results of this study reinforce the potential role of interspecies transmission and reassortment in generating novel and rare rotavirus strains which infect humans.
Collapse
|