1
|
Lin FY, Tzeng HY, Tseng CY, Tsai RS, Oba M, Mizutani T, Yamada Y, Chiou HY, Chuang ST, Hsu WL. Surveillance and genetic diversity of bovine viral diarrhea virus in dairy herds across Taiwan. Vet J 2025; 310:106305. [PMID: 39826793 DOI: 10.1016/j.tvjl.2025.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Bovine viral diarrhea virus (BVDV) significantly impacts cattle worldwide, causing respiratory, gastrointestinal, and reproductive disorders that lead to substantial economic losses. Despite its high global prevalence and various genotypes, the infection status of BVDV in Taiwan has not been reported. This study conducted large-scale surveillance in 2014, analyzing 460 bovine serum samples collected from 49 dairy herds across Taiwan. The results revealed a herd-level seroprevalence of 59.2 % (29/49), with significant regional variations: 16.7 % in the northern region and 77.8 % in the southern region. At the animal level, the overall BVDV-positive rate was 32.4 % (148/460), ranging from 3.3 % (northern region) to 41.5 % (central region), with significant regional differences as analyzed by the mixed-effects logistic regression model. Five-year surveillance of a single dairy farm revealed persistent BVDV circulation, with the seroprevalence starting at 89 % in 2019 and remaining between 82 % and 100 % among the cohort of 27 cattle monitored from 2020 to 2023. In contrast, a study of three farms revealed that while the two high-prevalence farms maintained high infection rates, the low-prevalence farm experienced a gradual decline in infections, indicating varied infection dynamics. Moreover, this study identified BVDV-1b as the predominant genotype in Taiwan, along with BVDV-1a and BVDV-2a, which were detected in mosquito samples. These findings emphasize the high prevalence of BVDV in Taiwan, ongoing viral circulation within herds, and the need for continuous surveillance and robust control measures to mitigate the spread of BVDV in Taiwan's cattle industry.
Collapse
Affiliation(s)
- Fong-Yuan Lin
- Department of Animal Healthcare, Hungkuang University, Taichung 433304, Taiwan.
| | - Hau-You Tzeng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ruei-Sheng Tsai
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan.
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan.
| | - Yumiko Yamada
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hue-Ying Chiou
- Graduate Institute of Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Whole-Genome-Sequence-Based Evolutionary Analyses of HoBi-like Pestiviruses Reveal Insights into Their Origin and Evolutionary History. Viruses 2023; 15:v15030733. [PMID: 36992441 PMCID: PMC10055830 DOI: 10.3390/v15030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
HoBi-like pestivirus (HoBiPeV), classified under Pestivirus H species, is an emerging cattle pathogen of high economic impact. However, the origin and evolution of HoBiPeV are not very clear due to a lack of full genomic sequences from diverse clades. This study aimed to determine full-genome sequences of HoBiPeV strains of three novel clades (c, d and e) and perform full-genome-based genetic and evolutionary analyses. Bayesian phylogenetic analyses herein confirmed the existence and independent evolution of four main HoBiPeV clades (a, c, d and e) globally, with genetic divergence ranging from 13.0% to 18.2%. Our Bayesian molecular clock estimates revealed that HoBiPeV most likely originated in India, with a dated tMRCA of 1938 (1762–2000), evidencing a more recent origin of HoBiPeV. The evolution rate of HoBiPeV was estimated to be 2.133 × 10−3 subs/site/year at full-genome level but varied widely among individual genes. Selection pressure analyses identified most of the positively selected sites in E2. Additionally, 21.8% of the ORF codon sites were found under strong episodic diversifying selection, providing first evidence of negative selection in HoBiPeV evolution. No recombination event was evident for HoBiPeV-c, d and e strains. These findings provide new insights into HoBiPeV origin and evolutionary history for better understanding the epidemiology and host–pathogen interactions and stimulate vaccine research.
Collapse
|
3
|
HoBi-like Pestivirus Is Highly Prevalent in Cattle Herds in the Amazon Region (Northern Brazil). Viruses 2023; 15:v15020453. [PMID: 36851667 PMCID: PMC9965828 DOI: 10.3390/v15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Pestiviruses are globally distributed and cause substantial economic losses to the cattle industry. In Brazil, the country with the world's largest cattle population, pestivirus infections are well described in some regions, such as in the south, where a high frequency of BVDV-2 is described and contrasts with the high prevalence of HoBi-like pestivirus (HoBiPeV) in the northeast. However, there is a lack of information about pestiviruses in the Amazon Region, in northern Brazil, with a cattle population estimated at 55.7 million head, which has a significant impact on the international livestock market. Therefore, this study investigated the seroprevalence and genetic variability of ruminant pestiviruses in 944 bovine serum samples from four states in northern Brazil: Pará (PA), Amapá (AP), Roraima (RR), and Amazonas (AM). Our results showed that 45.4% of the samples were seropositive (19.8% for BVDV-1, 14.1% for BVDV-2, and 20.9% for HoBiPeV). All samples were tested by RT-qPCR, and three were positive and classified as HoBiPeV in a phylogenetic analysis. These serological and molecular results contrast with those from other regions of the world, suggesting that the northern Brazilian states have a high prevalence of all bovine pestiviruses including HoBiPeV.
Collapse
|
4
|
de Oliveira PSB, Silva Júnior JVJ, Weiblen R, Flores EF. A new (old) bovine viral diarrhea virus 2 subtype: BVDV-2e. Arch Virol 2022; 167:2545-2553. [PMID: 36104508 DOI: 10.1007/s00705-022-05565-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/02/2022] [Indexed: 12/14/2022]
Abstract
Bovine pestiviruses are members of the species Pestivirus A (bovine viral diarrhea virus 1, BVDV-1), Pestivirus B (BVDV-2) or Pestivirus H (HoBiPeV). To date, BVDV-2 isolates/strains have been classified into three subtypes (a-c) by phylogenetic analysis, and an additional subtype (d) has been proposed based on 5' untranslated region (UTR) secondary structures. In a previous study, we identified some BVDV-2 sequences in the GenBank database that could not be classified as subtype a, b or c by phylogenetic analysis of their genomes, UTRs or individual genes. Here, we performed a detailed study of these sequences and assessed whether they might represent a distinct BVDV-2 subtype. Initially, we collected 85 BVDV-2 complete/near-complete genomes (CNCGs) from GenBank and performed a "proof of equivalence" between phylogenetic analyses based on CNCGs and open reading frames (ORFs), which showed that ORFs may be reliably used as a reference target for BVDV-2 phylogeny, allowing us to increase our dataset to 139 sequences. Among these, we found seven sequences that could not be classified as BVDV-2a-c. The same was observed in the phylogenetic analysis of CNCGs and viral genes. In addition, the seven non-BVDV-2a-c sequences formed a distinct cluster in all phylogenetic trees, which we propose to term BVDV-2e. BVDV-2e also showed 44 amino acid changes compared to BVDV-2a-c, 20 of which are in well-defined positions. Importantly, an additional phylogenetic analysis including BVDV-2d and a pairwise comparison of BVDV-2e and BVDV-2d sequences also supported the difference between these subtypes. Finally, we propose the recognition of BVDV-2e as a distinct BVDV-2 subtype and encourage its inclusion in future phylogenetic analyses to understand its distribution and evolution.
Collapse
Affiliation(s)
- Pablo Sebastian Britto de Oliveira
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 63A, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.,Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Valter Joaquim Silva Júnior
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 63A, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil. .,Setor de Virologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 63A, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Eduardo Furtado Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 63A, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| |
Collapse
|
5
|
Zhu J, Wang C, Zhang L, Zhu T, Li H, Wang Y, Xue K, Qi M, Peng Q, Chen Y, Hu C, Chen X, Chen J, Chen H, Guo A. Isolation of BVDV-1a, 1m, and 1v strains from diarrheal calf in china and identification of its genome sequence and cattle virulence. Front Vet Sci 2022; 9:1008107. [PMID: 36467650 PMCID: PMC9709263 DOI: 10.3389/fvets.2022.1008107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 08/25/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important livestock viral pathogen responsible for causing significant economic losses. The emerging and novel BVDV isolates are clinically and biologically important, as there are highly antigenic diverse and pathogenic differences among BVDV genotypes. However, no study has yet compared the virulence of predominant genotype isolates (BVDV-1a, 1b, and 1m) in China and the emerging genotype isolate BVDV-1v. The serological relationship among these genotypes has not yet been described. In this study, we isolated three BVDV isolates from calves with severe diarrhea, characterized as BVDV-1a, 1m, and novel 1v, based on multiple genomic regions [including 5-untranslated region (5'-UTR), Npro, and E2] and the phylogenetic analysis of nearly complete genomes. For the novel genotype, genetic variation analysis of the E2 protein of the BVDV-1v HB-03 strain indicates multiple amino acid mutation sites, including potential host cell-binding sites and neutralizing epitopes. Recombination analysis of the BVDV-1v HB-03 strain hinted at the possible occurrence of cross-genotypes (among 1m, 1o, and 1q) and cross-geographical region transmission events. To compare the pathogenic characters and virulence among these BVDV-1 genotypes, newborn calves uninfected with common pathogens were infected intranasally with BVDV isolates. The calves infected with the three genotype isolates show different symptom severities (diarrhea, fever, slowing weight gain, virus shedding, leukopenia, viremia, and immune-related tissue damage). In addition, these infected calves also showed bovine respiratory disease complexes (BRDCs), such as nasal discharge, coughing, abnormal breathing, and lung damage. Based on assessing different parameters, BVDV-1m HB-01 is identified as a highly virulent strain, and BVDV-1a HN-03 and BVDV-1v HB-03 are both identified as moderately virulent strains. Furthermore, the cross-neutralization test demonstrated the antigenic diversity among these Chinese genotypes (1a, 1m, and 1v). Our findings illustrated the genetic evolution characteristics of the emerging genotype and the pathogenic mechanism and antigenic diversity of different genotype strains, These findings also provided an excellent vaccine candidate strain and a suitable BVDV challenge strain for the comprehensive prevention and control of BVDV.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lina Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hanxiong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yunqiu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kaili Xue
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | | | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Castells M, Colina R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. MICROBIOLOGY RESEARCH 2021; 12:663-682. [DOI: 10.3390/microbiolres12030048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
Affiliation(s)
- Matías Castells
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| | - Rodney Colina
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| |
Collapse
|
7
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
8
|
Fritzen JTT, Morettin AB, Lorenzetti E, Alfieri AF, Alfieri AA. Bovine viral diarrhea virus subgenotype 1a in a mummified fetus from a Brazilian dairy cattle herd. J Vet Diagn Invest 2021; 33:966-968. [PMID: 34078202 DOI: 10.1177/10406387211022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe the molecular analysis of a wild-type field strain of bovine viral diarrhea virus (BVDV) identified in a mummified fetus from a small Brazilian dairy cattle herd. Nucleic acids extracted from samples of the lung, liver, heart, spleen, and kidney were tested by PCR assays for bovine alphaherpesvirus 1, Neospora caninum, Leptospira spp., Histophilus somni, and Brucella abortus, a nested PCR assay for Mycoplasma bovigenitalium and Ureaplasma diversum, and a RT-PCR assay for BVDV. Amplicons were only obtained in the RT-PCR assay for the partial amplification of the BVDV 5'UTR (288 bp) in kidney and spleen samples and the Npro (438 bp) gene in the kidney sample. Nucleotide sequencing of the amplified products and phylogenetic analyses based on the 2 BVDV genomic regions enabled the BVDV strain to be classified as subgenotype 1a.
Collapse
Affiliation(s)
- Juliana T T Fritzen
- Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Arthur B Morettin
- Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Universidade Estadual de Londrina, Londrina, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Alice F Alfieri
- Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Brazil.,Department of Veterinary Preventive Medicine, and National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Guo Z, Wang L, Niu L, Shangguan H, Huang C, Yi Y, Zhang Y, Gao M, Ge J. Genetic and evolutionary analysis of emerging HoBi-like pestivirus. Res Vet Sci 2021; 137:217-225. [PMID: 34023545 DOI: 10.1016/j.rvsc.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
HoBi-like pestivirus, an emerging species within the Pestivirus genus, is an important pathogen associated with a variety of clinical manifestations of ruminants, especially cattle. HoBi-like pestiviruses were identified in several countries and from different hosts, and raised concerns with regard to their acute and persistent infections, which is implicated in economic losses for cattle farmers. However, the transmission path, codon usage bias, and host adaptation of the virus has not been studied. Hence, we performed the analysis the spatio-temporal transmission based on the available 5'-UTR sequences of HoBi-like pestivirus, and then conducted codon analysis of the complete coding sequence of the virus. The results show the virus appeared in 1952 (95% HPD: 1905-1985) and may have originated in India. In addition, Italy is the hub for the spread of the virus. Moreover, six potential recombination events and two complex recombination events were discovered. Analysis of codon usage patterns revealed that the effective number of codon (ENC) values with an average of 50.85, and the codon usage bias is greatly affected by natural selection, which is different from the previous BVDV-1, 2. Finally, codon adaptation index (CAI) analysis shows that pigs may be the potential origin species of the HoBi-like pestivirus. These findings will contribute to more effective control of the spread of the virus, extend the knowledge about the genetic and evolutionary features of HoBi-like viruses and provide some information for vaccine research.
Collapse
Affiliation(s)
- Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengshi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ying Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yannan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
10
|
Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci 2021; 8:665128. [PMID: 34055953 PMCID: PMC8160231 DOI: 10.3389/fvets.2021.665128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV) consists of two species and various subspecies of closely related viruses of varying antigenicity, cytopathology, and virulence-induced pathogenesis. Despite the great ongoing efforts to control and prevent BVDV outbreaks and the emergence of new variants, outbreaks still reported throughout the world. In this review, we are focusing on the molecular biology of BVDV, its molecular pathogenesis, and the immune response of the host against the viral infection. Special attention was paid to discuss some immune evasion strategies adopted by the BVDV to hijack the host immune system to ensure the success of virus replication. Vaccination is one of the main strategies for prophylaxis and contributes to the control and eradication of many viral diseases including BVDV. We discussed the recent advances of various types of currently available classical and modern BVDV vaccines. However, with the emergence of new strains and variants of the virus, it is urgent to find some other novel targets for BVDV vaccines that may overcome the drawbacks of some of the currently used vaccines. Effective vaccination strategy mainly based on the preparation of vaccines from the homologous circulating strains. The BVDV-E2 protein plays important role in viral infection and pathogenesis. We mapped some important potential neutralizing epitopes among some BVDV genomes especially the E2 protein. These novel epitopes could be promising targets against the currently circulating strains of BVDV. More research is needed to further explore the actual roles of these epitopes as novel targets for the development of novel vaccines against BVDV. These potential vaccines may contribute to the global eradication campaign of the BVDV.
Collapse
Affiliation(s)
- Anwar A G Al-Kubati
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
11
|
Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018. Viruses 2021; 13:v13040664. [PMID: 33921513 PMCID: PMC8069065 DOI: 10.3390/v13040664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.
Collapse
|
12
|
Weber MN, Wolf JM, da Silva MS, Mosena ACS, Budaszewski RF, Lunge VR, Canal CW. Insights into the origin and diversification of bovine viral diarrhea virus 1 subtypes. Arch Virol 2021; 166:607-611. [PMID: 33392819 PMCID: PMC7779086 DOI: 10.1007/s00705-020-04913-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022]
Abstract
In this study, we performed phylogenetic and evolutionary analysis on bovine viral diarrhea virus 1 (BVDV-1) sequences to investigate the origin and temporal diversification of different BVDV-1 subtypes. Dated phylogenies using the complete polyprotein sequence were reconstructed, and the time of the most recent common ancestor (tMRCA) was estimated. The results demonstrated that BVDV-1 subtypes clustered into two phylogenetic clades, where the predominant subtypes worldwide grouped together. In the temporal analysis, the tMRCA of BVDV-1 was 1336, and the diversification into different subtypes appears to have occurred around 363 years ago. The present results help to elucidate the origins of BVDV-1 subtypes and the dynamics of ruminant pestiviruses.
Collapse
Affiliation(s)
- Matheus N Weber
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil.
| | - Jonas M Wolf
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana S da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Cristina S Mosena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata F Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Guo Z, Wang L, Qiao S, Deng R, Zhang G. Genetic characterization and recombination analysis of atypical porcine pestivirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104259. [PMID: 32087344 DOI: 10.1016/j.meegid.2020.104259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Atypical porcine pestivirus (APPV) is recognised as the etiology of congenital tremor (CT) Type A-II and poses a challenge to pig production. Here, we described a CT case in piglets caused by APPV infection in central China in 2017. Interestingly, different from a previous report, more CT litters were observed in the second and third parity sows compared to the first and fourth parity. Evolutionary analysis and recombination evaluation were conducted for the isolate and 61 APPV genomes were available in GenBank. Phylogenetic analysis revealed a high level of genetic variation of APPV and the coexistence of three clades (Clades I-III) in China. The isolate was clustered into Clade I, which seemed to be prevalent worldwide and displayed higher genetic variability (Subgroups 1-4) compared with Clade II and Clade III, both of which were only reported in China. Notably, three putative recombinants were identified and characterized in APPV. The recombination events occurred in inter-clades (Clade II and III) or intra-clades (Clade I). To the best of our knowledge, this study presents the first evidence of homologous recombination within Pestivirus K. These results provide new clinical presentations of APPV infection and may be helpful in better understanding the large amount of genetic variations in this genus.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
14
|
Choe S, Park GN, Cha RM, Hyun BH, Park BK, An DJ. Prevalence and Genetic Diversity of Atypical Porcine Pestivirus (APPV) Detected in South Korean Wild Boars. Viruses 2020; 12:v12060680. [PMID: 32599836 PMCID: PMC7354535 DOI: 10.3390/v12060680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Atypical porcine pestivirus (APPV), currently classified as pestivirus K, causes congenital tremor (CT) type A-II in piglets. Eighteen APPV strains were identified from 2297 South Korean wild boars captured in 2019. Phylogenetic analysis of the structural protein E2 and nonstructural proteins NS3 and Npro classified the APPV viruses, including reference strains, into Clades I, II and III. Clade I was divided into four subclades; however, the strains belonging to the four subclades differed slightly, depending on the tree analysis, the NS3, E2, and Npro genes. The maximum-likelihood method was assigned to South Korean wild boar APPV strains to various subclades within the three trees: subclades I.1 and I.2 in the E2 tree, subclade I.1 in the Npro tree, and subclades I.1 and I.4 in the NS3 ML tree. In conclusion, APPV among South Korean wild boars belonging to Clade I may be circulating at a higher level than among the South Korean domestic pig populations.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Ra Mi Cha
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Bong-Kyun Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- Correspondence: ; Tel.: +82-54-912-0795
| |
Collapse
|
15
|
An extensive field study reveals the circulation of new genetic variants of subtype 1a of bovine viral diarrhea virus in Uruguay. Arch Virol 2019; 165:145-156. [PMID: 31745717 PMCID: PMC7222985 DOI: 10.1007/s00705-019-04446-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is a major pathogen worldwide, causing significant economic losses to the livestock sector. In Uruguay, BVDV seroprevalence at the farm level is >80%. In this work, 2546 serum, blood or tissue samples collected from animals suspected of being affected by BVD between 2015 and 2017 were analyzed by reverse transcription PCR and sequencing. Analysis of the BVDV genomic regions 5'UTR/Npro, Npro and E2 revealed that BVDV-1a, 1i and 2b circulate in the country, with BVDV-1a being the most prevalent subtype. Population dynamics studies revealed that BVDV-1a has been circulating in our herds since ~1990. This subtype began to spread and evolve, accumulating point mutations at a rate of 3.48 × 10-3 substitutions/site/year, acquiring specific genetic characteristics that gave rise to two local genetic lineages of BVDV-1a. These lineages are divergent from those circulating worldwide, as well as the vaccine strain currently used in Uruguay. The most notable differences between field and vaccine strains were found in the E2 glycoprotein, suggesting that the amino acid substitutions could result in failure of cross-protection/neutralization after vaccination. This is the first study that compares Uruguayan BVDV field and vaccine strains with other BVDV strains from throughout the world. The results obtained in this study will be very useful for developing a suitable immunization program for BVDV in Uruguay by identifying local field strains as candidates for vaccine development.
Collapse
|
16
|
Quintero Barbosa J, Corredor Figueroa AP, Salas SS, Camargo H, Sanchéz A, Tobón J, Ortiz D, Schachtebeck E, Gutierrez MF. High prevalence of persistently infected animals from bovine viral diarrhea in Colombian cattle. BMC Vet Res 2019; 15:23. [PMID: 30630483 PMCID: PMC6327412 DOI: 10.1186/s12917-018-1769-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022] Open
Abstract
Background Bovine Viral Diarrhea Virus (BVDV) is associated with gastrointestinal, respiratory and reproductive diseases of livestock across the world that causes continuous economic losses in the cattle industry. This virus can establish a persistent infection (PI) in calves after the fetal infection, making BVDV positive catle carriers and primary reservoirs which will constantly transmit the virus to healthy and new-born animals. For this reason, the detection of the PI animals in herds is the first line of prevention of the viral infection. Results In this study, PI animals were detected in five different regions of Colombia through RT-PCR techniques and confirmed by sequencing. BVDV genotypes were determined using one fragment of the 5’UTR. It was found a 7% BVDV prevalence in animals and 22% in farms; and genotype 1 was identified as a single genotype for all of the samples. All samples were BVDV 1a. Conclusion This is the first report in Colombia with higher prevalence rates compared with other places in the world, turned out to be of great importance for the ranchers, the vaccine producers and animal health control parties.
Collapse
Affiliation(s)
- Juan Quintero Barbosa
- Escuela de Biología, Universidad Industrial de Santander, Carrera 27 Calle 9, ed 45, Bucaramanga, Colombia
| | | | - Sandra S Salas
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá, Colombia
| | - Hugo Camargo
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Alfredo Sanchéz
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Julio Tobón
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Diego Ortiz
- Corporación Colombiana de Investigación Agropecuaria - CORPOICA, Km 14 Vía Mosquera-Bogotá, Mosquera, Colombia
| | - Eric Schachtebeck
- Facultad de Veterinaria, Universidad Antonio Nariño, Carrera 3 Este # 47 A - 15, Bogotá, Colombia
| | - Maria Fernanda Gutierrez
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá, Colombia.
| |
Collapse
|
17
|
Spetter MJ, Uriarte ELL, Altamiranda EAG, Leunda MR, Pereyra SB, Verna AE, Odeón AC. Dual natural infection with bovine viral diarrhea virus -1 and -2 in a stillborn calf: tissue distribution and molecular characterization. Open Vet J 2018; 8:493-497. [PMID: 30775291 PMCID: PMC6356097 DOI: 10.4314/ovj.v8i4.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Dual infections with both bovine viral diarrhea virus (BVDV)-1 and -2 seem to be unusual. The aim of this study was to describe an infection with both BVDV genotypes in a stillborn calf. Virus isolation and phylogenetic analyses of the 5´UTR and NS5B regions confirmed the presence of BVDV-1b and -2b in spleen and lung, whereas BVDV-2b was also detected in brain, heart, liver, kidney and, fluid of cavities. These results confirm that dual infections with both BVDV-1 and BVDV-2 species can occur naturally and their tissue distribution can be different.
Collapse
Affiliation(s)
- Maximiliano J Spetter
- Fondo para la Investigación Científica y Tecnológica (FONCYT), Godoy Cruz 2370 2° piso, Buenos Aires (C1425FQD), Argentina.,Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina
| | - Enrique L Louge Uriarte
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina
| | - Erika A González Altamiranda
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, Buenos Aires (C1033AAJ), Argentina
| | - María R Leunda
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina
| | - Susana B Pereyra
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina
| | - Andrea E Verna
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, Buenos Aires (C1033AAJ), Argentina
| | - Anselmo C Odeón
- Grupo de Sanidad Animal, Área de Producción Animal, INTA EEA Balcarce, Ruta 226, km 73.5 (CP 7620), Argentina
| |
Collapse
|
18
|
Zhou K, Yue H, Tang C, Ruan W, Zhou Q, Zhang B. Prevalence and genome characteristics of atypical porcine pestivirus in southwest China. J Gen Virol 2018; 100:84-88. [PMID: 30516465 DOI: 10.1099/jgv.0.001188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atypical porcine pestivirus (APPV) causes congenital tremor (CT) in piglets and has a wide geographical distribution. In this study, we evaluated APPV prevalence using 165 piglet sera from southwest China. Viral RNA was detectable by qRT-PCR in 43.6 % (17/39, 95 % CI 27.8-60.4 %) of piglets with CT, while viral RNA was not detected in the sera of any healthy piglets. The seven complete APPV genomes were obtained from distinct farms and were 11 269-11 459 nucleotides in length. The genomes of the seven strains shared 82.8-98 % identity with the APPV reference strains. Phylogenetic analysis of the complete genomes as well as E2 and Nrpo sequences revealed that the seven APPVs clustered into two groups: four strains belonged to genogroups A and D and three strains belonged to a novel APPV genotype, tentatively called genogroup E. This study provides important insights into the epidemiological features and genetic diversity of APPV.
Collapse
Affiliation(s)
- Kelei Zhou
- 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China
| | - Hua Yue
- 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China.,2Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, PR China.,3Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, PR China
| | - Cheng Tang
- 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China.,3Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, PR China.,2Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, PR China
| | - Wenqiang Ruan
- 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China
| | - Qun Zhou
- 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China
| | - Bin Zhang
- 3Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, PR China.,1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, PR China
| |
Collapse
|
19
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
20
|
Smith DB, Meyers G, Bukh J, Gould EA, Monath T, Scott Muerhoff A, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P, Becher P. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 2017; 98:2106-2112. [PMID: 28786787 PMCID: PMC5656787 DOI: 10.1099/jgv.0.000873] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We propose the creation of seven new species in the genus
Pestivirus (family Flaviviridae) in
addition to the four existing species, and naming species in a host-independent
manner using the format Pestivirus X. Only the virus species
names would change; virus isolates would still be referred to by their original
names. The original species would be re-designated as Pestivirus
A (original designation Bovine viral
diarrhea virus 1), Pestivirus B (Bovine
viral diarrhea virus 2), Pestivirus C
(Classical swine fever virus) and Pestivirus
D (Border disease virus). The seven new species
(and example isolates) would be Pestivirus E (pronghorn
pestivirus), Pestivirus F (Bungowannah virus),
Pestivirus G (giraffe pestivirus), Pestivirus
H (Hobi-like pestivirus), Pestivirus I (Aydin-like
pestivirus), Pestivirus J (rat pestivirus) and
Pestivirus K (atypical porcine pestivirus). A bat-derived
virus and pestiviruses identified from sheep and goat (Tunisian sheep
pestiviruses), which lack complete coding region sequences, may represent two
additional species.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK.,Nuffield Department of Medicine, University of Oxford, UK
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ernest A Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Thomas Monath
- NewLink Genetics Corp, Infectious Diseases Division, Devens MA, USA
| | - A Scott Muerhoff
- Abbott Diagnostics Research and Development, Abbott Park, IL, USA
| | - Alexander Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Rico-Hesse
- Molecular Virology & Microbiology and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack T Stapleton
- Medical Service, Iowa City Veterans Affairs Medical Center, Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, IA, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, UK
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
21
|
Yeşilbağ K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017; 9:v9060128. [PMID: 28587150 PMCID: PMC5490805 DOI: 10.3390/v9060128] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a–1u), while four subgenotypes have been described for BVDV-2 (2a–2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Gizem Alpay
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Paul Becher
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|
22
|
Leng C, Zhang H, Kan Y, Yao L, Li M, Zhai H, Li Z, Liu C, Shi H, Ji J, Qiu R, Tian Z. Characterisation of Newly Emerged Isolates of Classical Swine Fever Virus in China, 2014-2015. J Vet Res 2017; 61:1-9. [PMID: 29978049 PMCID: PMC5894411 DOI: 10.1515/jvetres-2017-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction In 2014–2015, the epidemic of classical swine fever (CSF) occurred in many large-scale pig farms in different provinces of China, and a subgenotype 2.1d of CSF virus (CSFV) was newly identified. Material and Methods The phylogenetic relationship, genetic diversity, and epidemic status of the 2014–2015 CSFV isolates, 18 new CSFV isolates collected in 2015, and 43 other strains isolated in 2014–2015 were fully analysed, together with 163 CSFV reference isolates. Results Fifty-two 2014–2015 isolates belonged to subgenotype 2.1d and nine other isolates belonged to subgenotype 2.1b. The two subgenotype isolates showed unique molecular characteristics. Furthermore, the 2.1d isolates were found to possibly diverge from 2.1b isolates. Conclusion This study suggests that the Chinese CSFVs will remain pandemic.
Collapse
Affiliation(s)
- Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Mingliang Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongfei Shi
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Jun Ji
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
23
|
Workman AM, Heaton MP, Harhay GP, Smith TPL, Grotelueschen DM, Sjeklocha D, Brodersen B, Petersen JL, Chitko-McKown CG. Resolving Bovine viral diarrhea virus subtypes from persistently infected U.S. beef calves with complete genome sequence. J Vet Diagn Invest 2016; 28:519-28. [PMID: 27400958 DOI: 10.1177/1040638716654943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5'-UTR (5' untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought.
Collapse
Affiliation(s)
- Aspen M Workman
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Michael P Heaton
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Gregory P Harhay
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Dale M Grotelueschen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - David Sjeklocha
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Bruce Brodersen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| | - Carol G Chitko-McKown
- U.S. Meat Animal Research Center, Clay Center, NE (Workman, Heaton, Harhay, Smith, Chitko-McKown)Great Plains Veterinary Educational Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Clay Center, NE (Grotelueschen)Cattle Empire LLC, Satanta, KS (Sjeklocha)Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences (Brodersen), University of Nebraska-Lincoln, Lincoln, NEDepartment of Animal Science (Petersen), University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
24
|
da Fontoura Budaszewski R, Streck AF, Nunes Weber M, Maboni Siqueira F, Muniz Guedes RL, Wageck Canal C. Influence of vaccine strains on the evolution of canine distemper virus. INFECTION GENETICS AND EVOLUTION 2016; 41:262-269. [PMID: 27101783 DOI: 10.1016/j.meegid.2016.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Canine distemper virus (CDV) is a major dog pathogen belonging to the genus Morbillivirus of the family Paramyxoviridae. CDV causes disease and high mortality in dogs and wild carnivores. Although homologous recombination has been demonstrated in many members of Paramyxoviridae, these events have rarely been reported for CDV. To detect potential recombination events, the complete CDV genomes available in GenBank up to June 2015 were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Eight putative recombinant viruses derived from different CDV genotypes and different hosts were detected. The breakpoints of the recombinant strains were primarily located on fusion and hemagglutinin glycoproteins. These results suggest that homologous recombination is a frequent phenomenon in morbillivirus populations under natural replication, and CDV vaccine strains might play an important role in shaping the evolution of this virus.
Collapse
Affiliation(s)
- Renata da Fontoura Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - André Felipe Streck
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Nunes Weber
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franciele Maboni Siqueira
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Kumar R, Rajak KK, Chandra T, Muthuchelvan D, Saxena A, Chaudhary D, Kumar A, Pandey AB. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains. Vet World 2016; 8:1059-62. [PMID: 27047198 PMCID: PMC4774772 DOI: 10.14202/vetworld.2015.1059-1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/31/2015] [Accepted: 08/08/2015] [Indexed: 12/03/2022] Open
Abstract
Aim: This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. Materials and Methods: The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5’ and 3’ non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. Results: The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5’ and 3’ NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. Conclusion: CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.
Collapse
Affiliation(s)
- Ravi Kumar
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India; Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Kaushal Kishor Rajak
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Tribhuwan Chandra
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Arpit Saxena
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Dheeraj Chaudhary
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Ajay Kumar
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Awadh Bihari Pandey
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| |
Collapse
|
26
|
Valastro V, Holmes EC, Britton P, Fusaro A, Jackwood MW, Cattoli G, Monne I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. INFECTION GENETICS AND EVOLUTION 2016; 39:349-364. [PMID: 26883378 PMCID: PMC7172980 DOI: 10.1016/j.meegid.2016.02.015] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
Infectious bronchitis virus (IBV) is the causative agent of a highly contagious disease that results in severe economic losses to the global poultry industry. The virus exists in a wide variety of genetically distinct viral types, and both phylogenetic analysis and measures of pairwise similarity among nucleotide or amino acid sequences have been used to classify IBV strains. However, there is currently no consensus on the method by which IBV sequences should be compared, and heterogeneous genetic group designations that are inconsistent with phylogenetic history have been adopted, leading to the confusing coexistence of multiple genotyping schemes. Herein, we propose a simple and repeatable phylogeny-based classification system combined with an unambiguous and rationale lineage nomenclature for the assignment of IBV strains. By using complete nucleotide sequences of the S1 gene we determined the phylogenetic structure of IBV, which in turn allowed us to define 6 genotypes that together comprise 32 distinct viral lineages and a number of inter-lineage recombinants. Because of extensive rate variation among IBVs, we suggest that the inference of phylogenetic relationships alone represents a more appropriate criterion for sequence classification than pairwise sequence comparisons. The adoption of an internationally accepted viral nomenclature is crucial for future studies of IBV epidemiology and evolution, and the classification scheme presented here can be updated and revised novel S1 sequences should become available.
Collapse
Affiliation(s)
- Viviana Valastro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy; University of Padova, Padova, Italy.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul Britton
- Pirbright Institute, Compton Laboratory, Compton, UK
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Mark W Jackwood
- Department of Population Health, College of Veterinary Medicine, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA 30602, USA
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| |
Collapse
|
27
|
Goller KV, Dräger C, Höper D, Beer M, Blome S. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo. Arch Virol 2015; 160:3121-5. [PMID: 26392285 DOI: 10.1007/s00705-015-2611-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.
Collapse
Affiliation(s)
- Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|