1
|
Hadj-Henni L, Millot C, Lehrter V, Augot D. Wing morphometrics of biting midges (Diptera: Culicoides) of veterinary importance in Madagascar. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105494. [PMID: 37640128 DOI: 10.1016/j.meegid.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Biting midges are vectors of arboviruses such as bluetongue virus, bovine ephemeral fever virus, Akabane virus, African horse sickness virus, epizootic haemorrhagic disease virus and Schmallenberg virus. Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. Morphological identification of biting midges has revealed the presence of cryptic species. A total of 20 species are reported in Madagascar. In this study, we assessed wing morphometric analysis for identification of seven species namely C. dubitatus Kremer, Rebholtz-Hirtzel and Delécolle, C. enderleini Cornet and Brunhes, C. kibatiensis Goetghebuer, C. miombo Meiswinkel, C. moreli Clastrier, C. nevilli Cornet and Brunhes, and C. zuluensis de Meillon. Culicoides enderleini, C. miombo, C. moreli, C. nevilli and C. zuluensis are vectors diseases. A molecular approach, based on the cytochrome oxidase I gene (Cox1), was used for species delimitation. The molecular analysis presented seven different clades grouped two-by-two according to morphological characters. A total of 179 wing images were digitised. We found morphometric variation among seven species based on 11 landmarks and two outlines. Wing shape variation plots showed that species overlapped with species belonging to the same group. The cross-validation revealed a relatively high percentage of correct classification in most species, ranging from 91.3% to 100% for landmarks; 60% to 82.6% for outlines-1 and 77.1% to 91.3% for outlines-2. Our study suggests that wing geometric morphometric analysis is a robust tool for reliable "Moka Fohy" identification in Madagascar. This inexpensive and simple method is a precise supplement to morphological identification, with reaches the accuracy of Cox1 barcoding.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Christine Millot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France.
| | - Véronique Lehrter
- Unité BioSpecT, EA7506, Université de Reims Champagne-Ardenne, Reims, France
| | - Denis Augot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| |
Collapse
|
2
|
Hadj-Henni L, Djerada Z, Millot C, Cousinat M, Lehrter V, Augot D. Wing morphology variations in Culicoides circumscriptus from France. Front Vet Sci 2023; 10:1089772. [PMID: 37168098 PMCID: PMC10164937 DOI: 10.3389/fvets.2023.1089772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
The biting midge Culicoides circumscriptus Kieffer, 1918 is a European widespread vector of avian malaria throughout the continent and is a possible vector of Akabane virus and Bluetongue virus. This species populates a wide range of environments in contrasting ecological settings often exposed to strong seasonal fluctuations. The main goals of this study were to investigate C. circumscriptus phenotypic variation at three departments in France (Corsica Island, Moselle and Var) and to determine if its phenotypes vary with the environment. Culicoides circumscriptus wing phenotypes were analyzed using a geometric morphometric approach based on anatomical landmarks and outlines of the wing. Dendogram trees based on landmarks and the outlines-2 set (cell m4) showed similar topologies and separated populations of C. circumscriptus. In contrast, another set of outlines-1 (covering the r-m cross vein, M, radiale and arculus) presented a different hierarchical clustering tree. The phenotypic variation observed in C. circumscriptus indicated that these populations are exposed to environmental and ecological pressures. Our results suggest the presence of phenotypic plasticity in this species.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Zoubir Djerada
- Department of Medical Pharmacology, EA 3801, SFR Cap Santé, Reims University Hospital, Reims Cedex, France
| | - Christine Millot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
- *Correspondence: Christine Millot, ; Denis Augot,
| | - Mireille Cousinat
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Véronique Lehrter
- Université de Reims Champagne-Ardenne, Unité BioSpecT, EA7506, SFR Cap Santé, UFR de Pharmacie, Reims, France
| | - Denis Augot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
- ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, Maisons-Alfort Cedex, France
- *Correspondence: Christine Millot, ; Denis Augot,
| |
Collapse
|
3
|
Culicoides Latreille (Diptera: Ceratopogonidae) as potential vectors for Leishmania martiniquensis and Trypanosoma sp. in northern Thailand. PLoS Negl Trop Dis 2021; 15:e0010014. [PMID: 34910720 PMCID: PMC8673663 DOI: 10.1371/journal.pntd.0010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022] Open
Abstract
Biting midges of genus Culicoides (Diptera: Ceratopogonidae) are the vectors of several pathogenic arboviruses and parasites of humans and animals. Several reports have suggested that biting midges might be a potential vector of Leishmania parasites. In this study, we screened for Leishmania and Trypanosoma DNA in biting midges collected from near the home of a leishmaniasis patient in Lamphun province, northern Thailand by using UV-CDC light traps. The identification of biting midge species was based on morphological characters and confirmed using the Cytochrome C oxidase subunit I (COI) gene. The detection of Leishmania and Trypanosoma DNA was performed by amplifying the internal transcribed spacer 1 (ITS1) and small subunit ribosomal RNA (SSU rRNA) genes, respectively. All the amplified PCR amplicons were cloned and sequenced. The collected 223 biting midges belonged to seven species (Culicoides mahasarakhamense, C. guttifer, C. innoxius, C. sumatrae, C. huffi, C. oxystoma, and C. palpifer). The dominant species found in this study was C. mahasarakhamense (47.53%). Leishmania martiniquensis DNA was detected in three samples of 106 specimens of C. mahasarakhamense tested indicating a field infection rate of 2.83%, which is comparable to reported rates in local phlebotomines. Moreover, we also detected Trypanosoma sp. DNA in one sample of C. huffi. To our knowledge, this is the first molecular detection of L. martiniquensis in C. mahasarakhamense as well as the first detection of avian Trypanosoma in C. huffi. Blood meal analysis of engorged specimens of C. mahasarakhamense, C. guttifer, and C. huffi revealed that all specimens had fed on avian, however, further studies of the host ranges of Culicoides are needed to gain a better insight of potential vectors of emerging leishmaniasis. Clarification of the vectors of these parasites is also important to provide tools to establish effective disease prevention and control programs in Thailand. Culicoides are known to be vectors of several pathogens, including arboviruses and parasites. However, other investigations have demonstrated that Culicoides could be involved in the transmission of Leishmania and Trypanosoma parasites. Our studies demonstrated the first detection of L. martiniquensis in Culicoides mahasarakhamense and Trypanosoma sp., which is closely related to avian Trypanosome in C. huffi from an endemic area of leishmaniasis in northern Thailand. The finding of this work suggested that Culicoides biting midges are suspected to be the potential vector of L. martiniquensis and Trypanosoma parasites in Thailand.
Collapse
|
4
|
Hadj-Henni L, Djerada Z, Millot C, Augot D. Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode. Sci Rep 2021; 11:521. [PMID: 33441647 PMCID: PMC7806617 DOI: 10.1038/s41598-020-78053-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023] Open
Abstract
Biting midges are widespread around the world and play an essential role in the epidemiology of over 100 veterinary and medical diseases. For taxonomists, it is difficult to correctly identify species because of affinities among cryptic species and species complexes. In this study, species boundaries were examined for C. clastrieri and C. festivipennis and compared with six other Culicoides species. The classifiers are partial least squares discriminant analysis (PLS-DA) and sparse partial least squares discriminant analysis (sPLS-DA).The performance of the proposed method was evaluated using four models: (i) geometric morphometrics applied to wings; (ii) morphological wing characters, (iii) "Full wing" (landmarks and morphological characters) and (iv) "Full model" (morphological characters-wing, head, abdomen, legs-and wing landmarks). Double cross-validation procedures were used to validate the predictive ability of PLS-DA and sPLS-DA models. The AUC (area under the ROC curve) and the balanced error rate showed that the sPLS-DA model performs better than the PLS-DA model. Our final sPLS-DA analysis on the full wing and full model, with nine and seven components respectively, managed to perfectly classify our specimens. The C. clastrieri and C. festivipennis sequences, containing both COI and 28S genes, revealed our markers' weak discrimination power, with an intraspecific and interspecific divergence of 0.4% and 0.1% respectively. Moreover, C. clastrieri and C. festivipennis are grouped in the same clade. The morphology and wing patterns of C. clastrieri and C. festivipennis can be used to clearly distinguish them. Our study confirms C. clastrieri and C. festivipennis as two distinct species. Our results show that caution should be applied when relying solely on DNA barcodes for species identification or discovery.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- grid.11667.370000 0004 1937 0618Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Zoubir Djerada
- Department of Medical Pharmacology, EA 3801, SFR CAP Santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Christine Millot
- grid.11667.370000 0004 1937 0618Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Denis Augot
- grid.11667.370000 0004 1937 0618Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| |
Collapse
|
5
|
Venegas P, Pérez N, Zapata S, Mosquera JD, Augot D, Rojo-Álvarez JL, Benítez D. An approach to automatic classification of Culicoides species by learning the wing morphology. PLoS One 2020; 15:e0241798. [PMID: 33147271 PMCID: PMC7641368 DOI: 10.1371/journal.pone.0241798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. In this work, we propose a two-stage method for automatically analyzing Culicoides (Diptera: Ceratopogonidae) species. First, an image preprocessing task composed of median and Wiener filters followed by equalization and morphological operations is used to improve the quality of the wing image in order to allow an adequate segmentation of particles of interest. Then, the segmentation of the zones of interest inside the biting midge wing is made using the watershed transform. The proposed method is able to produce optimal feature vectors that help to identify Culicoides species. A database containing wing images of C. obsoletus, C. pusillus, C. foxi, and C. insignis species was used to test its performance. Feature relevance analysis indicated that the mean of hydraulic radius and eccentricity were relevant for the decision boundary between C. obsoletus and C. pusillus species. In contrast, the number of particles and the mean of the hydraulic radius was relevant for deciding between C. foxi and C. insignis species. Meanwhile, for distinguishing among the four species, the number of particles and zones, and the mean of circularity were the most relevant features. The linear discriminant analysis classifier was the best model for the three experimental classification scenarios previously described, achieving averaged areas under the receiver operating characteristic curve of 0.98, 0.90, and 0.96, respectively.
Collapse
Affiliation(s)
- Pablo Venegas
- Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Noel Pérez
- Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales “COCIBA”, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Juan Daniel Mosquera
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales “COCIBA”, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Denis Augot
- Usc Vecpar, ANSES LSA, EA7510, Université de Reims Champagne-Ardenne, Reims, France
| | - José Luis Rojo-Álvarez
- Department of Signal Theory and Communications, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Diego Benítez
- Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- * E-mail:
| |
Collapse
|
6
|
Lehrter V, Bañuls AL, Léger N, Rioux JA, Depaquit J. Phlebotomus (Paraphlebotomus) chabaudi and Phlebotomus riouxi: closely related species or synonyms? Parasite 2017; 24:47. [PMID: 29194032 PMCID: PMC5711378 DOI: 10.1051/parasite/2017050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/09/2017] [Indexed: 11/14/2022] Open
Abstract
Phlebotomus riouxi Depaquit, Killick-Kendrick & Léger 1998 was described as a species closely related to Phlebotomus chabaudi Croset, Abonnenc & Rioux 1970, differing mainly by the size and number of setae of the coxite basal lobe. Molecular studies carried out on several populations from Algeria and Tunisia and based on mitochondrial genes cytochrome b (Cytb) and cytochrome oxidase I (COI) supported the typological validity of these two species. Recently, specimens from a single population in southern Tunisia were morphologically identified as Ph. riouxi, Ph. chabaudi and intermediates, but were clustered in the same clade according to their Cytb and nuclear gene elongation factor-1 α (EF-1α) sequences. These species were thus synonymized. To further explore this synonymy, we carried out a molecular study on specimens from Algeria and Tunisia using the same molecular markers and a part of 28S rDNA. We did not find any morphologically intermediate specimens in our sampling. We highlighted differences between the genetic divergence rates within and between the two species for the three markers and we identified new haplotypes. The sequence analysis did not reveal any signature of introgression in allopatric nor in sympatric populations such as in the Ghomrassen population. Phylogenetic analyses based on our specimens revealed that the two main clades are Ph. chabaudi and Ph. riouxi, in agreement with the morphological identification. These results support the validity of Ph. riouxi and Ph. chabaudi as typological species.
Collapse
Affiliation(s)
- Véronique Lehrter
- EA 4688 - USC ANSES VECPAR, SFR Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne,
51 rue Cognacq-Jay,
51096
Reims France
| | - Anne-Laure Bañuls
- UMR MIVEGEC, IRD - CNRS - Université de Montpellier,
911 avenue Agropolis,
34394
Montpellier France
| | - Nicole Léger
- EA 4688 - USC ANSES VECPAR, SFR Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne,
51 rue Cognacq-Jay,
51096
Reims France
| | - Jean-Antoine Rioux
- Faculté de Médecine, Université de Montpellier,
2 rue de l'École de Médecine,
34000
Montpellier France
| | - Jérôme Depaquit
- EA 4688 - USC ANSES VECPAR, SFR Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne,
51 rue Cognacq-Jay,
51096
Reims France
| |
Collapse
|
7
|
Outomuro D, Johansson F. A potential pitfall in studies of biological shape: Does size matter? J Anim Ecol 2017; 86:1447-1457. [PMID: 28699246 DOI: 10.1111/1365-2656.12732] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The number of published studies using geometric morphometrics (GM) for analysing biological shape has increased steadily since the beginning of the 1990s, covering multiple research areas such as ecology, evolution, development, taxonomy and palaeontology. Unfortunately, we have observed that many published studies using GM do not evaluate the potential allometric effects of size on shape, which normally require consideration or assessment. This might lead to misinterpretations and flawed conclusions in certain cases, especially when size effects explain a large part of the shape variation. We assessed, for the first time and in a systematic manner, how often published studies that have applied GM consider the potential effects of allometry on shape. We reviewed the 300 most recent published papers that used GM for studying biological shape. We also estimated how much of the shape variation was explained by allometric effects in the reviewed papers. More than one-third (38%) of the reviewed studies did not consider the allometric component of shape variation. In studies where the allometric component was taken into account, it was significant in 88% of the cases, explaining up to 87.3% of total shape variation. We believe that one reason that may cause the observed results is a misunderstanding of the process that superimposes landmark configurations, i.e. the Generalized Procrustes Analysis, which removes isometric effects of size on shape, but not allometric effects. Allometry can be a crucial component of shape variation. We urge authors to address, and report, size effects in studies of biological shape. However, we do not propose to always remove size effects, but rather to evaluate the research question with and without the allometric component of shape variation. This approach can certainly provide a thorough understanding of how much size contributes to the observed shaped variation.
Collapse
Affiliation(s)
- David Outomuro
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Frank Johansson
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Augot D, Mathieu B, Hadj-Henni L, Barriel V, Zapata Mena S, Smolis S, Slama D, Randrianambinintsoa FJ, Trueba G, Kaltenbach M, Rahola N, Depaquit J. Molecular phylogeny of 42 species of Culicoides (Diptera, Ceratopogonidae) from three continents. ACTA ACUST UNITED AC 2017. [PMID: 28643630 PMCID: PMC5482051 DOI: 10.1051/parasite/2017020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The genus Culicoides includes vectors of important animal diseases such as bluetongue and Schmallenberg virus (BTV and SBV). This genus includes 1300 species classified in 32 subgenera and 38 unclassified species. However, the phylogenetic relationships between different subgenera of Culicoides have never been studied. Phylogenetic analyses of 42 species belonging to 12 subgenera and 8 ungrouped species of genus Culicoides from Ecuador, France, Gabon, Madagascar and Tunisia were carried out using two molecular markers (28S rDNA D1 and D2 domains and COI mtDNA). Sequences were subjected to non-probabilistic (maximum parsimony) and probabilistic (Bayesian inference (BI)) approaches. The subgenera Monoculicoides, Culicoides, Haematomyidium, Hoffmania, Remmia and Avaritia (including the main vectors of bluetongue disease) were monophyletic, whereas the subgenus Oecacta was paraphyletic. Our study validates the subgenus Remmia (= Schultzei group) as a valid subgenus, outside of the subgenus Oecacta. In Europe, Culicoides obsoletus, Culicoides scoticus and Culicoides chiopterus should be part of the Obsoletus complex whereas Culicoides dewulfi should be excluded from this complex. Our study suggests that the current Culicoides classification needs to be revisited with modern tools.
Collapse
Affiliation(s)
- Denis Augot
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Bruno Mathieu
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Université de Strasbourg, Faculté de Médecine, 3 rue Koeberlé, EA7292, Strasbourg 67000, France
| | - Leila Hadj-Henni
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Véronique Barriel
- Muséum National d'Histoire Naturelle, CR2P-UMR 7207 CNRS, MNHN, UPMC, 8 rue Buffon, CP 38, 75005 Paris, France
| | - Sonia Zapata Mena
- Instituto de Microbiologia, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Cumbayá, EC170157 Quito, Pichincha, Ecuador
| | - Sylvia Smolis
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Darine Slama
- Laboratory of Medical and Molecular Parasitology-Mycology, Faculty of Pharmacy, University of Monastir, 99UR/08-05, 5000 Monastir, Tunisia
| | | | - Gabriel Trueba
- Instituto de Microbiologia, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Cumbayá, EC170157 Quito, Pichincha, Ecuador
| | - Matthieu Kaltenbach
- Laboratoire de Pharmacologie, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Nil Rahola
- Unité MIVEGEC, UMR 224-5290 IRD-CNRS-UM, Centre IRD de Montpellier, BP 64501, 911 avenue Agropolis, 34394 Montpellier, France - Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Jérôme Depaquit
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| |
Collapse
|
9
|
Tay WT, Kerr PJ, Jermiin LS. Population Genetic Structure and Potential Incursion Pathways of the Bluetongue Virus Vector Culicoides brevitarsis (Diptera: Ceratopogonidae) in Australia. PLoS One 2016; 11:e0146699. [PMID: 26771743 PMCID: PMC4714883 DOI: 10.1371/journal.pone.0146699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/20/2015] [Indexed: 11/18/2022] Open
Abstract
Culicoides brevitarsis is a vector of the bluetongue virus (BTV), which infects sheep and cattle. It is an invasive species in Australia with an assumed Asian/South East Asian origin. Using one mitochondrial marker (i.e., part of the cytochrome oxidase subunit I gene) and six nuclear markers, we inferred population genetic structure and possible incursion pathways for Australian C. brevitarsis. Nine mitochondrial haplotypes, with low nucleotide sequence diversity (0.0-0.7%) among these, were identified in a sample of 70 individuals from seven sites. Both sets of markers revealed a homogeneous population structure, albeit with evidence of isolation by distance and two genetically distinct clusters distributed along a north-to-south cline. No evidence of a cryptic species complex was found. The geographical distribution of the mitochondrial haplotypes is consistent with at least two incursion pathways into Australia since the arrival of suitable livestock hosts. By contrast, 15 mitochondrial haplotypes, with up to four times greater nucleotide sequence diversity (0.0-2.9%) among these, were identified in a sample of 16 individuals of the endemic C. marksi (sampled from a site in South Australia and another in New South Wales). A phylogenetic tree inferred using the mitochondrial marker revealed that the Australian and Japanese samples of C. brevitarsis are as evolutionarily different from one another as some of the other Australian species (e.g., C. marksi, C. henryi, C. pallidothorax) are. The phylogenetic tree placed four of the species endemic to Australia (C. pallidothorax, C. bundyensis, C. marksi, C. henryi) in a clade, with a fifth such species (C. bunrooensis) sharing a common ancestor with that clade and a clade comprising two Japanese species (C. verbosus, C. kibunensis).
Collapse
Affiliation(s)
- W. T. Tay
- CSIRO, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
| | - P. J. Kerr
- CSIRO, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
- School of Biological Sciences, The University of Sydney, Sydney, 2006, Australia
| | - L. S. Jermiin
- CSIRO, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
| |
Collapse
|