1
|
Zhu Y, Shi H, Tang T, Li Q, Peng Y, Bermudez LE, Hu C, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase fadD33 Promotes Bacillus Calmette-Guérin Survival in Hostile Extracellular and Intracellular Microenvironments in the Host. Cells 2023; 12:2610. [PMID: 37998345 PMCID: PMC10670722 DOI: 10.3390/cells12222610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Salina EG, Grigorov A, Skvortsova Y, Majorov K, Bychenko O, Ostrik A, Logunova N, Ignatov D, Kaprelyants A, Apt A, Azhikina T. MTS1338, A Small Mycobacterium tuberculosis RNA, Regulates Transcriptional Shifts Consistent With Bacterial Adaptation for Entering Into Dormancy and Survival Within Host Macrophages. Front Cell Infect Microbiol 2019; 9:405. [PMID: 31850238 PMCID: PMC6901956 DOI: 10.3389/fcimb.2019.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. We investigated the dynamics of expression of MTS1338, a small non-coding RNA of Mycobacterium tuberculosis, in the mouse model in vivo, regulation of its expression in the infected macrophages, and the consequences of its overexpression in bacterial cultures. Here we demonstrate that MTS1338 significantly contributes to host-pathogen interactions. Activation of the host immune system triggered NO-inducible up-regulation of MTS1338 in macrophage-engulfed mycobacteria. Constitutive overexpression of MTS1338 in cultured mycobacteria improved their survival in vitro under low pH conditions. MTS1338 up-regulation launched a spectrum of shifts in the transcriptome profile similar to those reported for M. tuberculosis adaptation to hostile intra-macrophage environment. Using the RNA-seq approach, we demonstrate that gene expression changes accompanying MTS1338 overexpression indicate reduction in translational activity and bacterial growth. These changes indicate mycobacteria entering the dormant state. Taken together, our results suggest a direct involvement of this sRNA in the interplay between mycobacteria and the host immune system during infectious process.
Collapse
Affiliation(s)
- Elena G. Salina
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Artem Grigorov
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yulia Skvortsova
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Oksana Bychenko
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Albina Ostrik
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Nadezhda Logunova
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Dmitriy Ignatov
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Arseny Kaprelyants
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Tatyana Azhikina
- Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Salina EG, Grigorov AS, Bychenko OS, Skvortsova YV, Mamedov IZ, Azhikina TL, Kaprelyants AS. Resuscitation of Dormant "Non-culturable" Mycobacterium tuberculosis Is Characterized by Immediate Transcriptional Burst. Front Cell Infect Microbiol 2019; 9:272. [PMID: 31428590 PMCID: PMC6689984 DOI: 10.3389/fcimb.2019.00272] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 01/23/2023] Open
Abstract
Under unfavorable conditions such as host immune responses and environmental stresses, human pathogen Mycobacterium tuberculosis may acquire the dormancy phenotype characterized by "non-culturability" and a substantial decrease of metabolic activity and global transcription rates. Here, we found that the transition of M. tuberculosis from the dormant "non-culturable" (NC) cells to fully replicating population in vitro occurred not earlier than 7 days after the start of the resuscitation process, with predominant resuscitation over this time interval evidenced by shortening apparent generation time up to 2.8 h at the beginning of resuscitation. The early resuscitation phase was characterized by constant, albeit low, incorporation of radioactive uracil, indicating de novo transcription immediately after the removal of the stress factor, which resulted in significant changes of the M. tuberculosis transcriptional profile already after the first 24 h of resuscitation. This early response included transcriptional upregulation of genes encoding enzymes of fatty acid synthase system type I (FASI) and type II (FASII) responsible for fatty acid/mycolic acid biosynthesis, and regulatory genes, including whiB6 encoding a redox-sensing transcription factor. The second resuscitation phase took place 4 days after the resuscitation onset, i.e., still before the start of active cell division, and included activation of central metabolism genes encoding NADH dehydrogenases, ATP-synthases, and ribosomal proteins. Our results demonstrate, for the first time, that the resuscitation of dormant NC M. tuberculosis is characterized by immediate activation of de novo transcription followed by the upregulation of genes controlling key metabolic pathways and then, cell multiplication.
Collapse
Affiliation(s)
- Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana S Bychenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arseny S Kaprelyants
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole Mycobacterium tuberculosis Coding Genome from Different Area. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3574976. [PMID: 29854746 PMCID: PMC5964552 DOI: 10.1155/2018/3574976] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
Phenomenon of unequal use of synonymous codons in Mycobacterium tuberculosis is common. Codon usage bias not only plays an important regulatory role at the level of gene expression, but also helps in improving the accuracy and efficiency of translation. Meanwhile, codon usage pattern of Mycobacterium tuberculosis genome is important for interpreting evolutionary characteristics in species. In order to investigate the codon usage pattern of the Mycobacterium tuberculosis genome, 12 Mycobacterium tuberculosis genomes from different area are downloaded from the GeneBank. The correlations between G3, GC12, whole GC content, codon adaptation index, codon bias index, and so on of Mycobacterium tuberculosis genomes are calculated. The ENC-plot, relationship between A3/(A3 + T3) and G3/(G3 + C3), GC12 versus GC3 plot, and the RSCU of overall/separated genomes all show that the codon usage bias exists in all 12 Mycobacterium tuberculosis genomes. Lastly, relationship between CBI and the equalization of ENC shows a strong negative correlation between them. The relationship between protein length and GC content (GC3 and GC12) shows that more obvious differences in the GC content may be in shorter protein. These results show that codon usage bias existing in the Mycobacterium tuberculosis genomes could be used for further study on their evolutionary phenomenon.
Collapse
|
5
|
Aguilar-Ayala DA, Cnockaert M, Vandamme P, Palomino JC, Martin A, Gonzalez-Y-Merchand J. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J Med Microbiol 2018; 67:282-285. [DOI: 10.1099/jmm.0.000681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Diana Angelica Aguilar-Ayala
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Juan Carlos Palomino
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Anandi Martin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Laboratory of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Jorge Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| |
Collapse
|
6
|
Aguilar-Ayala DA, Tilleman L, Van Nieuwerburgh F, Deforce D, Palomino JC, Vandamme P, Gonzalez-Y-Merchand JA, Martin A. The transcriptome of Mycobacterium tuberculosis in a lipid-rich dormancy model through RNAseq analysis. Sci Rep 2017; 7:17665. [PMID: 29247215 PMCID: PMC5732278 DOI: 10.1038/s41598-017-17751-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is currently the number one killer among infectious diseases worldwide. Lipids are abundant molecules during the infectious cycle of Mycobacterium tuberculosis (Mtb) and studies better mimicking its actual metabolic state during pathogenesis are needed. Though most studies have focused on the mycobacterial lipid metabolism under standard culture conditions, little is known about the transcriptome of Mtb in a lipid environment. Here we determined the transcriptome of Mtb H37Rv in a lipid-rich environment (cholesterol and fatty acid) under aerobic and hypoxic conditions, using RNAseq. Lipids significantly induced the expression of 368 genes. A main core lipid response was observed involving efflux systems, iron caption and sulfur reduction. In co-expression with ncRNAs and other genes discussed below, may act coordinately to prepare the machinery conferring drug tolerance and increasing a persistent population. Our findings could be useful to tag relevant pathways for the development of new drugs, vaccines and new strategies to control TB.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium.
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Jorge A Gonzalez-Y-Merchand
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anandi Martin
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Pôle of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de, Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Garcia-Morales L, Leon-Solis L, Monroy-Muñoz IE, Talavera-Paulin M, Serafin-López J, Estrada-Garcia I, Rivera-Gutierrez S, Cerna-Cortes JF, Helguera-Repetto AC, Gonzalez-Y-Merchand JA. Comparative proteomic profiles reveal characteristic Mycobacterium tuberculosis proteins induced by cholesterol during dormancy conditions. MICROBIOLOGY-SGM 2017; 163:1237-1247. [PMID: 28771131 DOI: 10.1099/mic.0.000512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol has been reported to play an important role during Mycobacterium tuberculosis infection and during its dormant state inside the host. We present the determination of proteomic profiles of M. tuberculosis H37Rv in the presence of cholesterol as the sole carbon source under exponential growth and in two in vitro dormancy phases (NRP1 and NRP2). Using 2D-PAGE, we detected that M. tuberculosis expressed a high diversity of proteins in both exponential and non-replicative phases. We also found that cholesterol was involved in the overexpression of some proteins related to sulfur metabolism (CysA2), electron transport (FixB), cell wall synthesis (Ald), iron storage (BfrB), protein synthesis (Tig and EF-Tu) and dormancy maintenance (HspX and TB 31.7). According to our results we propose that proteins Ald, BfrB, FadA5 and TB31.7 are likely to play a fundamental role during in vitro dormancy of M. tuberculosis in the presence of cholesterol, helping to counteract its intracellular hostile microenvironment.
Collapse
Affiliation(s)
- Lazaro Garcia-Morales
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Lizbel Leon-Solis
- Laboratorios de Biologicos y Reactivos de México S.A. de C.V., Birmex. Instituto Nacional de Virologia. Prolongacion Manuel Carpio No. 492, Delegacion Miguel Hidalgo 11340, Ciudad de Mexico, Mexico
| | - Irma E Monroy-Muñoz
- Departamento de Genetica y Genomica Humana, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Moises Talavera-Paulin
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jeanet Serafin-López
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Iris Estrada-Garcia
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Sandra Rivera-Gutierrez
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jorge F Cerna-Cortes
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Addy C Helguera-Repetto
- Departamento de Inmunobioquimica, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| |
Collapse
|
8
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
9
|
Soto-Ramirez MD, Aguilar-Ayala DA, Garcia-Morales L, Rodriguez-Peredo SM, Badillo-Lopez C, Rios-Muñiz DE, Meza-Segura MA, Rivera-Morales GY, Leon-Solis L, Cerna-Cortes JF, Rivera-Gutierrez S, Helguera-Repetto AC, Gonzalez-y-Merchand JA. Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected. Tuberculosis (Edinb) 2017; 103:1-9. [DOI: 10.1016/j.tube.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
|