1
|
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024; 16:759. [PMID: 38793640 PMCID: PMC11125641 DOI: 10.3390/v16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu-Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Aleksandr Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| |
Collapse
|
2
|
Lhossein T, Sylvain K, Descamps V, Morel V, Demey B, Brochot E. Evaluation of the ABL NGS assay for HIV-1 drug resistance testing. Heliyon 2023; 9:e22210. [PMID: 38058650 PMCID: PMC10696055 DOI: 10.1016/j.heliyon.2023.e22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
HIV evolution and variability around the world requires special monitoring of the viral strains in infected people. High-throughput HIV sequencing and drug resistance testing techniques have become routinely available over the last few years. We conducted a study to assess the new CE-marked ABL NGS HIV genotyping assay on an Illumina® platform, to compare the results (the detection of resistance associated mutations (RAMs) detected in the three main targets: reverse transcriptase, protease, and integrase) with those produced by three Sanger-based assays, and to compare the assays' respective costs. For the 10 samples and a 20 % sensitivity threshold for the NGS technology, the percent agreement between the four assays ranged from 99.5 % to 100 %. We detected 4 more and 10 more RAMs of interest when we lowered the NGS assay's threshold to 10 % and 3 %, respectively. At a threshold of 3 %, the antiretroviral sensitivity interpretation algorithm (for protease inhibitors) was modified for only two patients. The NGS assay's unit cost fell rapidly as the number of samples per run increased. Compared with Sanger sequencing, the ABL NGS HIV genotyping assay is just as robust and somewhat more expensive but opens up interesting multiplexing perspectives for virology laboratories.
Collapse
Affiliation(s)
- Thomas Lhossein
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Karine Sylvain
- Department of Virology, Amiens University Medical Center, Amiens, France
| | - Véronique Descamps
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Virginie Morel
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France
- Agents Infectieux Résistance et Chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
3
|
Nosik M, Berezhnya E, Bystritskaya E, Kiseleva I, Lobach O, Kireev D, Svitich O. Female Sex Hormones Upregulate the Replication Activity of HIV-1 Sub-Subtype A6 and CRF02_AG but Not HIV-1 Subtype B. Pathogens 2023; 12:880. [PMID: 37513727 PMCID: PMC10383583 DOI: 10.3390/pathogens12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
More than 50% of all people living with HIV worldwide are women. Globally, HIV/AIDS is the leading cause of death among women aged 15 to 44. The safe and effective methods of hormonal contraception are an essential component of preventive medical care in order to reduce maternal and infant mortality. However, there is limited knowledge regarding the effect of hormones on the rate of viral replication in HIV infection, especially non-B subtypes. The goal of the present work was to study in vitro how the female hormones β-estradiol and progesterone affect the replication of the HIV-1 subtypes A6, CRF02_AG, and B. The findings show that high doses of hormones enhanced the replication of HIV-1 sub-subtype A6 by an average of 1.75 times and the recombinant variant CRF02_AG by 1.4 times but did not affect the replication of HIV-1 subtype B. No difference was detected in the expression of CCR5 and CXCR4 co-receptors on the cell surface, either in the presence or absence of hormones. However, one of the reasons for the increased viral replication could be the modulated TLRs secretion, as it was found that high doses of estradiol and progesterone upregulated, to varying degrees, the expression of TLR2 and TLR9 genes in the PBMCs of female donors infected with HIV-1 sub-subtype A6.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Elena Berezhnya
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Irina Kiseleva
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Olga Lobach
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| |
Collapse
|
4
|
Kirichenko A, Kireev D, Lapovok I, Shlykova A, Lopatukhin A, Pokrovskaya A, Bobkova M, Antonova A, Kuznetsova A, Ozhmegova E, Shtrek S, Sannikov A, Zaytseva N, Peksheva O, Piterskiy M, Semenov A, Turbina G, Filoniuk N, Shemshura A, Kulagin V, Kolpakov D, Suladze A, Kotova V, Balakhontseva L, Pokrovsky V, Akimkin V. HIV-1 Drug Resistance among Treatment-Naïve Patients in Russia: Analysis of the National Database, 2006-2022. Viruses 2023; 15:v15040991. [PMID: 37112971 PMCID: PMC10141655 DOI: 10.3390/v15040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In Russia, antiretroviral therapy (ART) coverage has significantly increased, which, in the absence of routine genotyping testing, could lead to an increase in HIV drug resistance (DR). The aim of this study was to investigate the patterns and temporal trends in HIV DR as well as the prevalence of genetic variants in treatment-naïve patients from 2006 to 2022, using data from the Russian database (4481 protease and reverse transcriptase and 844 integrase gene sequences). HIV genetic variants, and DR and DR mutations (DRMs) were determined using the Stanford Database. The analysis showed high viral diversity, with the predominance of A6 (78.4%), which was the most common in all transmission risk groups. The overall prevalence of surveillance DRMs (SDRMs) was 5.4%, and it reached 10.0% in 2022. Most patients harbored NNRTI SDRMs (3.3%). The prevalence of SDRMs was highest in the Ural (7.9%). Male gender and the CRF63_02A6 variant were association factors with SDRMs. The overall prevalence of DR was 12.7% and increased over time, primarily due to NNRTIs. Because baseline HIV genotyping is unavailable in Russia, it is necessary to conduct surveillance of HIV DR due to the increased ART coverage and DR prevalence. Centralized collection and unified analysis of all received genotypes in the national database can help in understanding the patterns and trends in DR to improve treatment protocols and increase the effectiveness of ART. Moreover, using the national database can help identify regions or transmission risk groups with a high prevalence of HIV DR for epidemiological measures to prevent the spread of HIV DR in the country.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Ilya Lapovok
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | | | | | - Anastasia Pokrovskaya
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Department of Infectious Diseases with Courses of Epidemiology and Phthisiology, Medical Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina Bobkova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Sergey Shtrek
- Omsk Research Institute of Natural Focal Infections, 644080 Omsk, Russia
- Department of Microbiology, Virology and Immunology, Omsk State Medical University, 644099 Omsk, Russia
| | - Aleksej Sannikov
- Omsk Research Institute of Natural Focal Infections, 644080 Omsk, Russia
- Department of Microbiology, Virology and Immunology, Omsk State Medical University, 644099 Omsk, Russia
| | - Natalia Zaytseva
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 603022 Nizhny Novgorod, Russia
| | - Olga Peksheva
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 603022 Nizhny Novgorod, Russia
| | - Michael Piterskiy
- Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Ekaterinburg, Russia
| | - Aleksandr Semenov
- Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Ekaterinburg, Russia
| | - Galina Turbina
- Lipetsk Regional Center for Prevention and Control of AIDS and Infectious Diseases, 398043 Lipetsk, Russia
| | - Natalia Filoniuk
- Lipetsk Regional Center for Prevention and Control of AIDS and Infectious Diseases, 398043 Lipetsk, Russia
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS Treatment and Prevention of the Ministry of Health of Krasnodar Region, 350000 Krasnodar, Russia
- Department of Infectious Diseases and Epidemiology, The Faculty of Advanced Training and Professional Retraining of Specialists, Kuban State Medical University of the Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia
| | - Valeriy Kulagin
- Clinical Center of HIV/AIDS Treatment and Prevention of the Ministry of Health of Krasnodar Region, 350000 Krasnodar, Russia
- Department of Infectious Diseases and Epidemiology, The Faculty of Advanced Training and Professional Retraining of Specialists, Kuban State Medical University of the Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia
| | - Dmitry Kolpakov
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia
| | - Aleksandr Suladze
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia
| | - Valeriya Kotova
- Khabarovsk Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 680610 Khabarovsk, Russia
| | - Lyudmila Balakhontseva
- Khabarovsk Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 680610 Khabarovsk, Russia
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
5
|
Kirichenko A, Kireev D, Lapovok I, Shlykova A, Lopatukhin A, Pokrovskaya A, Ladnaya N, Grigoryan T, Petrosyan A, Sarhatyan T, Sargsyants N, Hovsepyan T, Ghazaryan H, Hovakimyan H, Martoyan S, Pokrovsky V. Prevalence of Pretreatment HIV-1 Drug Resistance in Armenia in 2017-2018 and 2020-2021 following a WHO Survey. Viruses 2022; 14:2320. [PMID: 36366418 PMCID: PMC9698750 DOI: 10.3390/v14112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The increased antiretroviral therapy (ART) coverage of patients in the absence of routine genotyping tests and in the context of active labor migration highlight the importance of HIV-1 drug resistance (DR) surveillance in Armenia. We conducted a two-phase pretreatment DR (PDR) study in 2017-2018 (phase I; 120 patients) and 2020-2021 (phase II; 133 patients) according to the WHO-approved protocol. The analysis of HIV-1 genetic variants showed high degrees of viral diversity, with the predominance of A6. The prevalence of any PDR was 9.2% in phase I and 7.5% in phase II. PDR to protease inhibitors was found only in 0.8% in phase II. PDR to efavirenz and nevirapine was found among 5.0% and 6.7% of patients in phase I, and 6.0% and 6.8% of patients in phase II, respectively. The prevalence of PDR to nucleoside reverse-transcriptase inhibitors decreased from 5.0% in phase I to 0.8% in phase II. In addition, we identified risk factors associated with the emergence of DR-male, MSM, subtype B, and residence in or around the capital of Armenia-and showed the active spread of HIV-1 among MSM in transmission clusters, i.e., harboring DR, which requires the immediate attention of public health policymakers for the prevention of HIV-1 DR spread in the country.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Ilya Lapovok
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | | | | | - Anastasia Pokrovskaya
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Department of Infectious Diseases with Courses of Epidemiology and Phthisiology, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalya Ladnaya
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Trdat Grigoryan
- National Center for Infectious Diseases, Yerevan 0025, Armenia
| | | | | | | | | | | | | | | | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
6
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
7
|
Safina KR, Sidorina Y, Efendieva N, Belonosova E, Saleeva D, Kirichenko A, Kireev D, Pokrovsky V, Bazykin GA. Molecular Epidemiology of HIV-1 in Oryol Oblast, Russia. Virus Evol 2022; 8:veac044. [PMID: 35775027 PMCID: PMC9239399 DOI: 10.1093/ve/veac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
The HIV/AIDS epidemic in Russia is growing, with approximately 100,000 people infected annually. Molecular epidemiology can provide insight into the structure and dynamics of the epidemic. However, its applicability in Russia is limited by the weakness of genetic surveillance, as viral genetic data are only available for <1 per cent of cases. Here, we provide a detailed description of the HIV-1 epidemic for one geographic region of Russia, Oryol Oblast, by collecting and sequencing viral samples from about a third of its known HIV-positive population (768 out of 2,157 patients). We identify multiple introductions of HIV-1 into Oryol Oblast, resulting in eighty-two transmission lineages that together comprise 66 per cent of the samples. Most introductions are of subtype A (315/332), the predominant HIV-1 subtype in Russia, followed by CRF63 and subtype B. Bayesian analysis estimates the effective reproduction number Re for subtype A at 2.8 [1.7–4.4], in line with a growing epidemic. The frequency of CRF63 has been growing more rapidly, with the median Re of 11.8 [4.6–28.7], in agreement with recent reports of this variant rising in frequency in some regions of Russia. In contrast to the patterns described previously in European and North American countries, we see no overrepresentation of males in transmission lineages; meanwhile, injecting drug users are overrepresented in transmission lineages. This likely reflects the structure of the HIV-1 epidemic in Russia dominated by heterosexual and, to a smaller extent, people who inject drugs transmission. Samples attributed to men who have sex with men (MSM) transmission are associated with subtype B and are less prevalent than expected from the male-to-female ratio for this subtype, suggesting underreporting of the MSM transmission route. Together, our results provide a high-resolution description of the HIV-1 epidemic in Oryol Oblast, Russia, characterized by frequent interregional transmission, rapid growth of the epidemic, and rapid displacement of subtype A with the recombinant CRF63 variant.
Collapse
Affiliation(s)
- Ksenia R Safina
- The Institute for Information Transmission Problems of Russian Academy of Sciences , Moscow, Russian Federation
- Skolkovo Institute of Science and Technology , Moscow, Russian Federation
| | - Yulia Sidorina
- Oryol Regional Center for AIDS and Infectious Diseases Control and Prevention , Oryol, Russian Federation
| | - Natalya Efendieva
- Oryol Regional Center for AIDS and Infectious Diseases Control and Prevention , Oryol, Russian Federation
| | - Elena Belonosova
- Oryol Regional Center for AIDS and Infectious Diseases Control and Prevention , Oryol, Russian Federation
| | - Darya Saleeva
- Central Research Institute of Epidemiology , Moscow, Russian Federation
| | - Alina Kirichenko
- Central Research Institute of Epidemiology , Moscow, Russian Federation
| | - Dmitry Kireev
- Central Research Institute of Epidemiology , Moscow, Russian Federation
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology , Moscow, Russian Federation
| | - Georgii A Bazykin
- The Institute for Information Transmission Problems of Russian Academy of Sciences , Moscow, Russian Federation
- Skolkovo Institute of Science and Technology , Moscow, Russian Federation
| |
Collapse
|
8
|
Kirichenko A, Kireev D, Lopatukhin A, Murzakova A, Lapovok I, Saleeva D, Ladnaya N, Gadirova A, Ibrahimova S, Safarova A, Grigoryan T, Petrosyan A, Sarhatyan T, Gasich E, Bunas A, Glinskaya I, Yurovsky P, Nurov R, Soliev A, Ismatova L, Musabaev E, Kazakova E, Rakhimova V, Pokrovsky V. Prevalence of HIV-1 drug resistance in Eastern European and Central Asian countries. PLoS One 2022; 17:e0257731. [PMID: 35061671 PMCID: PMC8782385 DOI: 10.1371/journal.pone.0257731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Eastern Europe and Central Asia (EECA) is one of the regions where the HIV epidemic continues to grow at a concerning rate. Antiretroviral therapy (ART) coverage in EECA countries has significantly increased during the last decade, which can lead to an increase in the risk of emergence, transmission, and spread of HIV variants with drug resistance (DR) that cannot be controlled. Because HIV genotyping cannot be performed in these countries, data about HIV DR are limited or unavailable. OBJECTIVES To monitor circulating HIV-1 genetic variants, assess the prevalence of HIV DR among patients starting antiretroviral therapy, and reveal potential transmission clusters among patients in six EECA countries: Armenia, Azerbaijan, Belarus, Russia, Tajikistan, and Uzbekistan. MATERIALS AND METHODS We analyzed 1071 HIV-1 pol-gene fragment sequences (2253-3369 bp) from patients who were initiating or reinitiating first-line ART in six EECA counties, i.e., Armenia (n = 120), Azerbaijan (n = 96), Belarus (n = 158), Russia (n = 465), Tajikistan (n = 54), and Uzbekistan (n = 178), between 2017 and 2019. HIV Pretreatment DR (PDR) and drug resistance mutation (DRM) prevalence was estimated using the Stanford HIV Resistance Database. The PDR level was interpreted according to the WHO standard PDR survey protocols. HIV-1 subtypes were determined using the Stanford HIV Resistance Database and subsequently confirmed by phylogenetic analysis. Transmission clusters were determined using Cluster Picker. RESULTS Analyses of HIV subtypes showed that EECA, in general, has the same HIV genetic variants of sub-subtype A6, CRF63_02A1, and subtype B, with different frequencies and representation for each country. The prevalence of PDR to any drug class was 2.8% in Uzbekistan, 4.2% in Azerbaijan, 4.5% in Russia, 9.2% in Armenia, 13.9% in Belarus, and 16.7% in Tajikistan. PDR to protease inhibitors (PIs) was not detected in any country. PDR to nucleoside reverse-transcriptase inhibitors (NRTIs) was not detected among patients in Azerbaijan, and was relatively low in other countries, with the highest prevalence in Tajikistan (5.6%). The prevalence of PDR to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) was the lowest in Uzbekistan (2.8%) and reached 11.1% and 11.4% in Tajikistan and Belarus, respectively. Genetic transmission network analyses identified 226/1071 (21.1%) linked individuals, forming 93 transmission clusters mainly containing two or three sequences. We found that the time since HIV diagnosis in clustered patients was significantly shorter than that in unclustered patients (1.26 years vs 2.74 years). Additionally, the K103N/S mutation was mainly observed in clustered sequences (6.2% vs 2.8%). CONCLUSIONS Our study demonstrated different PDR prevalence rates and DR dynamics in six EECA countries, with worrying levels of PDR in Tajikistan and Belarus, where prevalence exceeded the 10% threshold recommended by the WHO for immediate public health action. Because DR testing for clinical purposes is not common in EECA, it is currently extremely important to conduct surveillance of HIV DR in EECA due to the increased ART coverage in this region.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | - Alexey Lopatukhin
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | | | - Ilya Lapovok
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | - Daria Saleeva
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | - Natalya Ladnaya
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| | | | | | - Aygun Safarova
- Republic Center of the Struggle against AIDS, Baku, Azerbaijan
| | | | | | | | - Elena Gasich
- Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Belarus
| | - Anastasia Bunas
- Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Belarus
| | - Iryna Glinskaya
- Republican Center for Hygiene, Epidemiology and Public Health, Minsk, Belarus
| | - Pavel Yurovsky
- Republican Center for Hygiene, Epidemiology and Public Health, Minsk, Belarus
| | - Rustam Nurov
- Republican AIDS prevention center, Dushanbe, Tajikistan
| | - Alijon Soliev
- Republican AIDS prevention center, Dushanbe, Tajikistan
| | | | | | | | - Visola Rakhimova
- Center for development of profession qualification of medical workers, Tashkent, Uzbekistan
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, Moscow, Russian Federation
| |
Collapse
|
9
|
Limnaios S, Kostaki EG, Adamis G, Astriti M, Chini M, Mangafas N, Lazanas M, Patrinos S, Metallidis S, Tsachouridou O, Papastamopoulos V, Kakalou E, Chatzidimitriou D, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Gova M, Pilalas D, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Maltezos E, Drimis S, Sypsa V, Lagiou P, Magiorkinis G, Hatzakis A, Skoura L, Paraskevis D. Dating the Origin and Estimating the Transmission Rates of the Major HIV-1 Clusters in Greece: Evidence about the Earliest Subtype A1 Epidemic in Europe. Viruses 2022; 14:v14010101. [PMID: 35062305 PMCID: PMC8782043 DOI: 10.3390/v14010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Our aim was to estimate the date of the origin and the transmission rates of the major local clusters of subtypes A1 and B in Greece. Phylodynamic analyses were conducted in 14 subtype A1 and 31 subtype B clusters. The earliest dates of origin for subtypes A1 and B were in 1982.6 and in 1985.5, respectively. The transmission rate for the subtype A1 clusters ranged between 7.54 and 39.61 infections/100 person years (IQR: 9.39, 15.88), and for subtype B clusters between 4.42 and 36.44 infections/100 person years (IQR: 7.38, 15.04). Statistical analysis revealed that the average difference in the transmission rate between the PWID and the MSM clusters was 6.73 (95% CI: 0.86 to 12.60; p = 0.026). Our study provides evidence that the date of introduction of subtype A1 in Greece was the earliest in Europe. Transmission rates were significantly higher for PWID than MSM clusters due to the conditions that gave rise to an extensive PWID HIV-1 outbreak ten years ago in Athens, Greece. Transmission rate can be considered as a valuable measure for public health since it provides a proxy of the rate of epidemic growth within a cluster and, therefore, it can be useful for targeted HIV prevention programs.
Collapse
Affiliation(s)
- Stefanos Limnaios
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Myrto Astriti
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | | | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Dimitrios Pilalas
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Efstratios Maltezos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
- Correspondence:
| |
Collapse
|
10
|
Fujimoto K, Paraskevis D, Kuo JC, Hallmark CJ, Zhao J, Hochi A, Kuhns LM, Hwang LY, Hatzakis A, Schneider JA. Integrated molecular and affiliation network analysis: Core-periphery social clustering is associated with HIV transmission patterns. SOCIAL NETWORKS 2022; 68:107-117. [PMID: 34262236 PMCID: PMC8274587 DOI: 10.1016/j.socnet.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study investigates the two-mode core-periphery structures of venue affiliation networks of younger Black men who have sex with men (YBMSM). We examined the association between these structures and HIV phylogenetic clusters, defined as members who share highly similar HIV strains that are regarded as a proxy for sexual affiliation networks. Using data from 114 YBMSM who are living with HIV in two large U.S. cities, we found that HIV phylogenetic clustering patterns were associated with social clustering patterns whose members share affiliation with core venues that overlap with those of YBMSM. Distinct HIV transmission patterns were found in each city, a finding that can help to inform tailored venue-based and network intervention strategies.
Collapse
Affiliation(s)
- Kayo Fujimoto
- Department of Health Promotion, The University of Texas Health Science Center at Houston, 7000 Fannin Street, UCT 2514, Houston, TX 77030
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jacky C. Kuo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030
| | | | - Jing Zhao
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Andre Hochi
- Department of Health Promotion, The University of Texas Health Science Center at Houston, 7000 Fannin Street, UCT 2514, Houston, TX 77030
| | - Lisa M Kuhns
- Division of Adolescent Medicine, Ann & Robert H. Lurie Children’s Hospital, and Northwestern University, Feinberg School of Medicine, Department of Pediatrics, 225 E. Chicago Avenue, #161, Chicago, IL 60611
| | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environmental Science, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John A. Schneider
- Department of Medicine and Public Health Sciences and the Chicago Center for HIV Elimination, University of Chicago, 5837 South Maryland Avenue MC 5065, Chicago, IL 60637
| |
Collapse
|
11
|
Sivay MV, Totmenin AV, Zyryanova DP, Osipova IP, Nalimova TM, Gashnikova MP, Ivlev VV, Meshkov IO, Chokmorova UZ, Narmatova E, Motorov U, Akmatova Z, Asybalieva N, Bekbolotov AA, Kadyrbekov UK, Maksutov RA, Gashnikova NM. Characterization of HIV-1 Epidemic in Kyrgyzstan. Front Microbiol 2021; 12:753675. [PMID: 34721358 PMCID: PMC8554114 DOI: 10.3389/fmicb.2021.753675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Kyrgyzstan has one of the highest rates of HIV-1 spread in Central Asia. In this study, we used molecular–epidemiological approaches to examine the HIV-1 epidemic in Kyrgyzstan. Samples were obtained from HIV-positive individuals who visited HIV/AIDS clinics. Partial pol gene sequences were used to identify HIV-1 subtypes and drug resistance mutations (DRMs) and to perform phylogenetic analysis. Genetic diversity and history reconstruction of the major HIV-1 subtypes were explored using BEAST. This study includes an analysis of 555 HIV-positive individuals. The study population was equally represented by men and women aged 1–72 years. Heterosexual transmission was the most frequent, followed by nosocomial infection. Men were more likely to acquire HIV-1 during injection drug use and while getting clinical services, while women were more likely to be infected through sexual contacts (p < 0.01). Heterosexual transmission was the more prevalent among individuals 25–49 years old; individuals over 49 years old were more likely to be persons who inject drugs (PWID). The major HIV-1 variants were CRF02_AG, CRF63_02A, and sub-subtype A6. Major DRMs were detected in 26.9% of the study individuals; 62.2% of those had DRMs to at least two antiretroviral (ARV) drug classes. Phylogenetic analysis revealed a well-defined structure of CRF02_AG, indicating locally evolving sub-epidemics. The lack of well-defined phylogenetic structure was observed for sub-subtype A6. The estimated origin date of CRF02_AG was January 1997; CRF63_02A, April 2004; and A6, June 1995. A rapid evolutionary dynamic of CRF02_AG and A6 among Kyrgyz population since the mid-1990s was observed. We observed the high levels of HIV-1 genetic diversity and drug resistance in the study population. Complex patterns of HIV-1 phylogenetics in Kyrgyzstan were found. This study highlights the importance of molecular–epidemiological analysis for HIV-1 surveillance and treatment implementation to reduce new HIV-1 infections.
Collapse
Affiliation(s)
- Mariya V Sivay
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Alexei V Totmenin
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Daria P Zyryanova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Irina P Osipova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Tatyana M Nalimova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Mariya P Gashnikova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Vladimir V Ivlev
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | | | - Umut Z Chokmorova
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Elmira Narmatova
- Osh Regional Center of AIDS Treatment and Prevention, Osh, Kyrgyzstan
| | - Ulukbek Motorov
- Osh Regional Center of AIDS Treatment and Prevention, Osh, Kyrgyzstan
| | - Zhyldyz Akmatova
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Nazgul Asybalieva
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Aybek A Bekbolotov
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Ulan K Kadyrbekov
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Rinat A Maksutov
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Natalya M Gashnikova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| |
Collapse
|
12
|
Mendes Da Silva RK, Monteiro de Pina Araujo II, Venegas Maciera K, Gonçalves Morgado M, Lindenmeyer Guimarães M. Genetic Characterization of a New HIV-1 Sub-Subtype A in Cabo Verde, Denominated A8. Viruses 2021; 13:v13061093. [PMID: 34201179 PMCID: PMC8230070 DOI: 10.3390/v13061093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previous molecular characterization of Human immunodeficiency virus (HIV-1) samples from Cabo Verde pointed out a vast HIV-1 pol diversity, with several subtypes and recombinant forms, being 5.2% classified as AU-pol. Thus, the aim of the present study was to improve the characterization of these AU sequences. The genomic DNA of seven HIV-1 AU pol-infected individuals were submitted to four overlapping nested-PCR fragments aiming to compose the full-length HIV-1 genome. The final classification was based on phylogenetic trees that were generated using the maximum likelihood and bootscan analysis. The genetic distances were calculated using Mega 7.0 software. Complete genome amplification was possible for two samples, and partial genomes were obtained for the other five. These two samples grouped together with a high support value, in a separate branch from the other sub-subtypes A and CRF26_A5U. No recombination was verified at bootscan, leading to the classification of a new sub-subtype A. The intragroup genetic distance from the new sub-subtype A at a complete genome was 5.2%, and the intergroup genetic varied from 8.1% to 19.0% in the analyzed fragments. Our study describes a new HIV-1 sub-subtype A and highlights the importance of continued molecular surveillance studies, mainly in countries with high HIV molecular diversity.
Collapse
Affiliation(s)
- Rayana Katylin Mendes Da Silva
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (R.K.M.D.S.); (K.V.M.); (M.G.M.)
| | | | - Karine Venegas Maciera
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (R.K.M.D.S.); (K.V.M.); (M.G.M.)
| | - Mariza Gonçalves Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (R.K.M.D.S.); (K.V.M.); (M.G.M.)
| | - Monick Lindenmeyer Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (R.K.M.D.S.); (K.V.M.); (M.G.M.)
- Correspondence: ; Tel.: +55-21-3865-8154
| |
Collapse
|
13
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Paraskevis D, Kostaki EG, Kramvis A, Magiorkinis G. Classification, Genetic Diversity and Global Distribution of Hepatitis C Virus (HCV) Genotypes and Subtypes. HEPATITIS C: EPIDEMIOLOGY, PREVENTION AND ELIMINATION 2021:55-69. [DOI: 10.1007/978-3-030-64649-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Paraskevis D, Kostaki EG. An evolving genetic tapestry of HIV-1 recombinants. Lancet HIV 2020; 7:e733-e734. [PMID: 33128900 DOI: 10.1016/s2352-3018(20)30272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Evangelia-Georgia Kostaki
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
16
|
Kostaki EG, Gova M, Adamis G, Xylomenos G, Chini M, Mangafas N, Lazanas M, Metallidis S, Tsachouridou O, Papastamopoulos V, Chatzidimitriou D, Kakalou E, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Pilalas D, Papageorgiou I, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Petrakis V, Drimis S, Gogos C, Hatzakis A, Beloukas A, Skoura L, Paraskevis D. A Nationwide Study about the Dispersal Patterns of the Predominant HIV-1 Subtypes A1 and B in Greece: Inference of the Molecular Transmission Clusters. Viruses 2020; 12:E1183. [PMID: 33086773 PMCID: PMC7589601 DOI: 10.3390/v12101183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023] Open
Abstract
Our aim was to investigate the dispersal patterns and parameters associated with local molecular transmission clusters (MTCs) of subtypes A1 and B in Greece (predominant HIV-1 subtypes). The analysis focused on 1751 (28.4%) and 2575 (41.8%) sequences of subtype A1 and B, respectively. Identification of MTCs was based on phylogenetic analysis. The analyses identified 38 MTCs including 2-1518 subtype A1 sequences and 168 MTCs in the range of 2-218 subtype B sequences. The proportion of sequences within MTCs was 93.8% (1642/1751) and 77.0% (1982/2575) for subtype A1 and B, respectively. Transmissions within MTCs for subtype A1 were associated with risk group (Men having Sex with Men vs. heterosexuals, OR = 5.34, p < 0.001) and Greek origin (Greek vs. non-Greek origin, OR = 6.05, p < 0.001) and for subtype B, they were associated with Greek origin (Greek vs. non-Greek origin, OR = 1.57, p = 0.019), younger age (OR = 0.96, p < 0.001), and more recent sampling (time period: 2011-2015 vs. 1999-2005, OR = 3.83, p < 0.001). Our findings about the patterns of across and within country dispersal as well as the parameters associated with transmission within MTCs provide a framework for the application of the study of molecular clusters for HIV prevention.
Collapse
Affiliation(s)
- Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Georgios Xylomenos
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Pilalas
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Ifigeneia Papageorgiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Vasilis Petrakis
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Charalambos Gogos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Patras, 26504 Rio, Greece;
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L697BE, UK
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| |
Collapse
|
17
|
Maksimenko LV, Totmenin AV, Gashnikova MP, Astakhova EM, Skudarnov SE, Ostapova TS, Yaschenko SV, Meshkov IO, Bocharov EF, Maksyutov RА, Gashnikova NM. Genetic Diversity of HIV-1 in Krasnoyarsk Krai: Area with High Levels of HIV-1 Recombination in Russia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9057541. [PMID: 32964045 PMCID: PMC7501552 DOI: 10.1155/2020/9057541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022]
Abstract
More than a quarter of HIV-infected individuals registered in Russia live in Siberia. Unlike Central Russia where HIV-1 subtype A6 is predominant, in most Siberian regions since 2012, a new HIV-1 CRF63_02A1 genetic variant has spread, with the share of this variant attaining 75-85% among newly identified HIV cases. Krasnoyarsk Krai is considered to be a high-risk territory according to morbidity rate and HIV infection incidence among the population. The current paper aims to study the molecular epidemiologic characteristics of HIV-1 spreading in Krasnoyarsk Krai. Phylogenetic and recombination analyses of pol (PR-RT, IN) and env regions of the virus were used for genotyping 159 HIV-1 isolated in Krasnoyarsk Krai. 57.2% of the isolates belonged to subtype A (A6) specific to Russia, 12.6% to CRF63_02A1, and 0.6% to CRF02_AGСА, and in 29.6% HIV-1 URFs were detected, including URF63/А (23.9%), URFА/В (4.4%), and URF02/А (1.3%). In 6 of 7, HIV-1 URFА/В identical recombination model was detected; the origin of 38 URF63/А was proven to be the result of individual recombination events. Since 2015, a share of the population with newly diagnosed HIV who were infected with HIV-1 URF reached an exceptionally high rate of 38.6%. As distinct from adjacent Siberian regions, the HIV-1 CRF63_02A1 prevalence rate in Krasnoyarsk Krai is within 16%; however, the increased contribution of new HIV-1 into the regional epidemic development was observed due to the recombination of viruses of subtypes А, В, and CRF63_02A1. The difference between the described molecular epidemiologic picture in Krasnoyarsk Krai and in adjacent areas is likely caused by differences in predominant routes of HIV transmission and by more recent HIV-1 CRF63_02A1 transmission in the PWID group, which had a high prevalence of HIV-1 subtype A by the time of the new virus transmission, resulting in increased possibility of coinfection with various HIV-1 genetic variants.
Collapse
Affiliation(s)
- Lada V. Maksimenko
- State Research Center of Virology and Biotechnology Vector, Koltsovo 630559, Russia
| | - Aleksey V. Totmenin
- State Research Center of Virology and Biotechnology Vector, Koltsovo 630559, Russia
| | - Mariya P. Gashnikova
- State Research Center of Virology and Biotechnology Vector, Koltsovo 630559, Russia
| | | | - Sergey E. Skudarnov
- Krasnoyarsk Regional Center for Prevention and Control of AIDS, Krasnoyarsk 660049, Russia
| | - Tatyana S. Ostapova
- Krasnoyarsk Regional Center for Prevention and Control of AIDS, Krasnoyarsk 660049, Russia
| | - Svetlana V. Yaschenko
- Krasnoyarsk Regional Center for Prevention and Control of AIDS, Krasnoyarsk 660049, Russia
| | - Ivan O. Meshkov
- Novosibirsk Tuberculosis Research Institute, Novosibirsk 630040, Russia
| | - Evgeniy F. Bocharov
- State Research Center of Virology and Biotechnology Vector, Koltsovo 630559, Russia
| | - Rinat А. Maksyutov
- State Research Center of Virology and Biotechnology Vector, Koltsovo 630559, Russia
| | | |
Collapse
|
18
|
Genetic variability of the U5 and downstream sequence of major HIV-1 subtypes and circulating recombinant forms. Sci Rep 2020; 10:13214. [PMID: 32764600 PMCID: PMC7411029 DOI: 10.1038/s41598-020-70083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
The critical role of the regulatory elements at the 5′ end of the HIV-1 genome in controlling the life cycle of HIV-1 indicates that this region significantly influences virus fitness and its biological properties. In this study, we performed a detailed characterization of strain-specific variability of sequences from the U5 to upstream of the gag gene start codon of diverse HIV-1 strains by using next-generation sequencing (NGS) techniques. Overall, we found that this region of the HIV-1 genome displayed a low degree of intra-strain variability. On the other hand, inter-strain variability was found to be as high as that reported for gag and env genes (13–17%). We observed strain-specific single point and clustered mutations in the U5, PBS, and gag leader sequences (GLS), generating potential strain-specific transcription factor binding sites (TFBS). Using an infrared gel shift assay, we demonstrated the presence of potential TFBS such as E-box in CRF22_01A, and Stat 6 in subtypes A and G, as well as in their related CRFs. The strain-specific variation found in the sequence corresponding at the RNA level to functional domains of the 5ʹ UTR, could also potentially impact the secondary/tertiary structural rearrangement of this region. Thus, the variability observed in this 5′ end of the genomic region of divergent HIV-1 strains strongly suggests that functions of this region might be affected in a strain-specific manner. Our findings provide new insights into DNA–protein interactions that regulate HIV-1 replication and the influence of strain characterization on the biology of HIV-1 infection.
Collapse
|
19
|
Kirichenko A, Lapovok I, Baryshev P, van de Vijver DAMC, van Kampen JJA, Boucher CAB, Paraskevis D, Kireev D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020; 12:v12080838. [PMID: 32752001 PMCID: PMC7472261 DOI: 10.3390/v12080838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing use of the integrase strand transfer inhibitor (INSTI) class for the treatment of HIV-infection has pointed to the importance of analyzing the features of HIV-1 subtypes for an improved understanding of viral genetic variability in the occurrence of drug resistance (DR). In this study, we have described the prevalence of INSTI DR in a Russian cohort and the genetic features of HIV-1 integrase sub-subtype A6. We included 408 HIV infected patients who were not exposed to INSTI. Drug resistance mutations (DRMs) were detected among 1.3% of ART-naïve patients and among 2.7% of INSTI-naïve patients. The prevalence of 12 polymorphic mutations was significantly different between sub-subtypes A6 and A1. Analysis of the genetic barriers determined two positions in which subtype A (A1 and A6) showed a higher genetic barrier (G140C and V151I) compared with subtype B, and one position in which subtypes A1 and B displayed a higher genetic barrier (L74M and L74I) than sub-subtype A6. Additionally, we confirmed that the L74I mutation was selected at the early stage of the epidemic and subsequently spread as a founder effect in Russia. Our data have added to the overall understanding of the genetic features of sub-subtype A6 in the context of drug resistance.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
- Correspondence:
| | - Ilya Lapovok
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| | - Pavel Baryshev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| | - David A. M. C. van de Vijver
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Jeroen J. A. van Kampen
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Charles A. B. Boucher
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Goudi, Athens, Greece;
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| |
Collapse
|
20
|
Kazennova EV, Antonova AA, Ozhmegova EN, Demyanenko ER, Minakova MV, Belousova OV, Gromov KB, Bobkova MR. GENETIC ANALYSIS OF HIV-1 IN THE ALTAI KRAY: THE FURTHER SPREAD OF THE CRF63_02A1 VARIANT IN WESTERN SIBERIA. ACTA ACUST UNITED AC 2020. [DOI: 10.22328/2077-9828-2020-12-1-47-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IThe aim of this study was to characterize HIV-1 genetic strains currently circulating in Altay Kray (Western Siberia) and to analyze the HIV resistance on this territory.Materials and methods. Blood samples were collected, with informed consent, in 2017 from 82 HIV infected persons living in Altai Kray. Sequences of pol gene fragments coding protease and part of reverse transcriptase were obtained by in house system and Sanger sequencing. Genotyping, phylogenetic and recombinant analyses were carried out by HIVdbProgram: Sequence Analysis, COMET HIV-1, REGA HIV-1 Subtyping Tool (V 3.0), MEGA 5.05, RIP and jpHMM.Results and discussion. The results of genotype analysis revealed that the circulating recombinant form CRF63_02A1 dominated in Altay Kray (61%), subtype А was identified in 33%, the remaining subtypes, such as B, G, URF, accounted for 6%. According to phylogenetic analysis results, CRF63_02A1 sequences formed the common branch with nucleotide sequences of strains found in other regions of Siberia and Far East. All of HIV-1 variants belonging to subtype A clustered together with nucleotide sequences of A6 dominating in Russia. RIP analysis allowed to identify three unique recombinant forms (URFs), formed by CRF63_02A1 and A6. Drug resistance mutations were identified in 8 of 21 ART patients (8/21, 38%). The prevalence of drug resistance mutations in naïve patients equaled to 5,1%. Conclusion. Currently, the process of changing the dominant strain to CRF63_02A1 is ongoing in the Altai Kray, where 13 years ago the main variant was HIV sub-subtype A6 (IDU-A).
Collapse
Affiliation(s)
- E. V. Kazennova
- National Research Center оf Epidemiology and Microbiology named after honorary academician N. F. Gamalei
| | - A. A. Antonova
- National Research Center оf Epidemiology and Microbiology named after honorary academician N. F. Gamalei
| | - E. N. Ozhmegova
- National Research Center оf Epidemiology and Microbiology named after honorary academician N. F. Gamalei
| | - E. R. Demyanenko
- Altai regional center for prevention and control of AIDS and infectious diseases
| | - M. V. Minakova
- Altai regional center for prevention and control of AIDS and infectious diseases
| | - O. V. Belousova
- Altai regional center for prevention and control of AIDS and infectious diseases
| | - K. B. Gromov
- National Research Center оf Epidemiology and Microbiology named after honorary academician N. F. Gamalei
| | - M. R. Bobkova
- National Research Center оf Epidemiology and Microbiology named after honorary academician N. F. Gamalei
| |
Collapse
|
21
|
Schlösser M, Kartashev VV, Mikkola VH, Shemshura A, Saukhat S, Kolpakov D, Suladze A, Tverdokhlebova T, Hutt K, Heger E, Knops E, Böhm M, Di Cristanziano V, Kaiser R, Sönnerborg A, Zazzi M, Bobkova M, Sierra S. HIV-1 Sub-Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses 2020; 12:v12040475. [PMID: 32331438 PMCID: PMC7232409 DOI: 10.3390/v12040475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Russia has one of the largest and fastest growing HIV epidemics. However, epidemiological data are scarce. Sub-subtype A6 is most prevalent in Russia but its identification is challenging. We analysed protease/reverse transcriptase-, integrase-sequences, and epidemiological data from 303 patients to develop a methodology for the systematisation of A6 identification and to describe the HIV epidemiology in the Russian Southern Federal District. Drug consumption (32.0%) and heterosexual contact (27.1%) were the major reported transmission risks. This study successfully established the settings for systematic identification of A6 samples. Low frequency of subtype B (3.3%) and large prevalence of sub-subtype A6 (69.6%) and subtype G (23.4%) were detected. Transmitted PI- (8.8%) and NRTI-resistance (6.4%) were detected in therapy-naive patients. In therapy-experienced patients, 17.3% of the isolates showed resistance to PIs, 50.0% to NRTI, 39.2% to NNRTIs, and 9.5% to INSTIs. Multiresistance was identified in 52 isolates, 40 corresponding to two-class resistance and seven to three-class resistance. Two resistance-associated-mutations significantly associated to sub-subtype A6 samples: A62VRT and G190SRT. This study establishes the conditions for a systematic annotation of sub-subtype A6 to normalise epidemiological studies. Accurate knowledge on South Russian epidemiology will allow for the development of efficient regional frameworks for HIV-1 infection management.
Collapse
Affiliation(s)
- Madita Schlösser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Vladimir V. Kartashev
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Visa H. Mikkola
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS of the Ministry of Health of Krasnodar Region, 350015 Krasnodar, Russia;
| | - Sergey Saukhat
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
| | - Dmitriy Kolpakov
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Alexandr Suladze
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Tatiana Tverdokhlebova
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Katharina Hutt
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Michael Böhm
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maurizio Zazzi
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Marina Bobkova
- Department of General Virology, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Saleta Sierra
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
- Correspondence: ; Tel.: +49-221-4788-5807
| |
Collapse
|
22
|
Lorenzin G, Gargiulo F, Caruso A, Caccuri F, Focà E, Celotti A, Quiros-Roldan E, Izzo I, Castelli F, De Francesco MA. Prevalence of Non-B HIV-1 Subtypes in North Italy and Analysis of Transmission Clusters Based on Sequence Data Analysis. Microorganisms 2019; 8:microorganisms8010036. [PMID: 31878069 PMCID: PMC7022943 DOI: 10.3390/microorganisms8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-1 diversity is increasing in European countries due to immigration flows, as well as travels and human mobility, leading to the circulation of both new viral subtypes and new recombinant forms, with important implications for public health. We analyzed 710 HIV-1 sequences comprising protease and reverse-transcriptase (PR/RT) coding regions, sampled from 2011 to 2017, from naive patients in Spedali Civili Hospital, Brescia, Italy. Subtyping was performed by using a combination of different tools; the phylogenetic analysis with a structured coalescence model and Makarov Chain Monte Carlo was used on the datasets, to determine clusters and evolution. We detected 304 (43%) patients infected with HIV-1 non-B variants, of which only 293 sequences were available, with four pure subtypes and five recombinant forms; subtype F1 (17%) and CRF02_AG (51.1%) were most common. Twenty-five transmission clusters were identified, three of which included >10 patients, belonging to subtype CRF02_AG and subtype F. Most cases of alleged transmission were between heterosexual couples. Probably due to strong migratory flows, we have identified different subtypes with particular patterns of recombination or, as in the case of the subtype G (18/293, 6.1%), to a complete lack of relationship between the sequenced strains, revealing that they are all singletons. Continued HIV molecular surveillance is most important to analyze the dynamics of the boost of transmission clusters in order to implement public health interventions aimed at controlling the HIV epidemic.
Collapse
Affiliation(s)
- Giovanni Lorenzin
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy; (G.L.); (F.G.); (A.C.); (F.C.)
- Institute of Microbiology and Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Franco Gargiulo
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy; (G.L.); (F.G.); (A.C.); (F.C.)
| | - Arnaldo Caruso
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy; (G.L.); (F.G.); (A.C.); (F.C.)
| | - Francesca Caccuri
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy; (G.L.); (F.G.); (A.C.); (F.C.)
| | - Emanuele Focà
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy; (E.F.); (A.C.); (E.Q.-R.); (I.I.); (F.C.)
| | - Anna Celotti
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy; (E.F.); (A.C.); (E.Q.-R.); (I.I.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy; (E.F.); (A.C.); (E.Q.-R.); (I.I.); (F.C.)
| | - Ilaria Izzo
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy; (E.F.); (A.C.); (E.Q.-R.); (I.I.); (F.C.)
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy; (E.F.); (A.C.); (E.Q.-R.); (I.I.); (F.C.)
| | - Maria A. De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, 25123 Brescia, Italy; (G.L.); (F.G.); (A.C.); (F.C.)
- Correspondence: ; Tel.: +39-030-399-5860
| |
Collapse
|
23
|
Kirichenko AA, Kireev DE, Lopatukhin AE, Murzakova AV, Lapovok IA, Ladnaya NN, Pokrovsky VV. PREVALENCE AND STRUCTURE OF HIV-1 DRUG RESISTANCE AMONG TREATMENT NAÏVE PATIENTS SINCE THE INTRODUCTION OF ANTIRETROVIRAL THERAPY IN THE RUSSIAN FEDERATION. ACTA ACUST UNITED AC 2019. [DOI: 10.22328/2077-9828-2019-11-2-75-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.
Collapse
Affiliation(s)
- A. A. Kirichenko
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - D. E. Kireev
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - A. E. Lopatukhin
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - A. V. Murzakova
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - I. A. Lapovok
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - N. N. Ladnaya
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| | - V. V. Pokrovsky
- Central Research Institute of Epidemiology Federal service for supervision in the field of protection of the rights of consumers and well-being man’s
| |
Collapse
|
24
|
Delgado E, Benito S, Montero V, Cuevas MT, Fernández-García A, Sánchez-Martínez M, García-Bodas E, Díez-Fuertes F, Gil H, Cañada J, Carrera C, Martínez-López J, Sintes M, Pérez-Álvarez L, Thomson MM. Diverse Large HIV-1 Non-subtype B Clusters Are Spreading Among Men Who Have Sex With Men in Spain. Front Microbiol 2019; 10:655. [PMID: 31001231 PMCID: PMC6457325 DOI: 10.3389/fmicb.2019.00655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 11/23/2022] Open
Abstract
In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries.
Collapse
Affiliation(s)
- Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Fernández-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Sánchez-Martínez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,European Program for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Javier Cañada
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Martínez-López
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Sintes
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
25
|
Kostaki EG, Flampouris A, Karamitros T, Chueca N, Alvarez M, Casas P, Alejos B, Hatzakis A, Garcia F, Paraskevis D. Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions. Front Microbiol 2019; 10:370. [PMID: 30915040 PMCID: PMC6421502 DOI: 10.3389/fmicb.2019.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain. Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively. Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin. Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics.
Collapse
Affiliation(s)
- Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Flampouris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Timokratis Karamitros
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Natalia Chueca
- Department of Clinical Microbiology, Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | - Marta Alvarez
- Department of Clinical Microbiology, Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | - Paz Casas
- Department of Clinical Microbiology, Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | - Belen Alejos
- Centro Nacional de Epidemiología, Universidad de Alcalá de Henares, Madrid, Spain
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Federico Garcia
- Department of Clinical Microbiology, Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
26
|
Lebedev A, Lebedeva N, Moskaleychik F, Pronin A, Kazennova E, Bobkova M. Human Immunodeficiency Virus-1 Diversity in the Moscow Region, Russia: Phylodynamics of the Most Common Subtypes. Front Microbiol 2019; 10:320. [PMID: 30863382 PMCID: PMC6399469 DOI: 10.3389/fmicb.2019.00320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/06/2019] [Indexed: 01/12/2023] Open
Abstract
This study analyzes the HIV-1 subtype diversity and its phylodynamics in Moscow region, which is the most densely populated area of Russia characterized by high rates of internal and external migration. The demographic and viral data from 896 HIV-infected individuals collected during 2011–2016 were analyzed. The study revealed broad diversity in the HIV-1 subtypes found in Moscow, which included A6 (85.1%), B (7.6%), CRF02_AG (1.2%) and URF_A6/B recombinants (4.2%). Other HIV-1 subtypes were detected as single cases. While A6 was most prevalent (>86.0%) among heterosexuals, injecting drug users and cases of mother-to-child transmission of HIV, subtype B (76.3%) was more common in men who have sex with men. Phylogenetic reconstruction revealed that the A6 sequences were introduced into the epidemic cluster that arose approximately around 1998. Within the subtype B, six major epidemic clusters were identified, each of which contained strains associated with only one or two dominant transmission routes. The date of origin of these clusters varied between 1980 and 1993, indicating that the HIV-1 B epidemic began much earlier than the HIV-1 A6 epidemic. Reconstruction of the demographic history of subtypes A6 and B identified at least two epidemic growth phases, which included an initial phase of exponential growth followed by a decline in the mid/late 2010s. Thus, our results indicate an increase in HIV-1 genetic diversity in Moscow region. They also help in understanding the HIV-1 temporal dynamics as well as the genetic relationships between its circulating strains.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | - Fedor Moskaleychik
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | - Elena Kazennova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Marina Bobkova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
27
|
Agapkina YY, Pustovarova MA, Korolev SP, Zyryanova DP, Ivlev VV, Totmenin AV, Gashnikova NM, Gottikh MB. Consensus Integrase of a New HIV-1 Genetic Variant CRF63_02A1. Acta Naturae 2019; 11:14-22. [PMID: 31024744 PMCID: PMC6475865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
The high genetic variability of the human immunodeficiency virus (HIV-1) leads to a constant emergence of new genetic variants, including the recombinant virus CRF63_02A1, which is widespread in the Siberian Federal District of Russia. We studied HIV-1 CRF63_02A1 integrase (IN_CRF) catalyzing the incorporation of viral DNA into the genome of an infected cell. The consensus sequence was designed, recombinant integrase was obtained, and its DNA-binding and catalytic activities were characterized. The stability of the IN_CRF complex with the DNA substrate did not differ from the complex stability for subtype A and B integrases; however, the rate of complex formation was significantly higher. The rates and efficiencies of 3'-processing and strand transfer reactions catalyzed by IN_CRF were found to be higher, too. Apparently, all these distinctive features of IN_CRF may result from specific amino acid substitutions in its N-terminal domain, which plays an important role in enzyme multimerization and binding to the DNA substrate. It was also found that the drug resistance mutations Q148K/G140S and G118R/E138K significantly reduce the catalytic activity of IN_CRF and its sensitivity to the strand transfer inhibitor raltegravir. Reduction in sensitivity to raltegravir was found to be much stronger in the case of double-mutation Q148K/G140S.
Collapse
Affiliation(s)
- Y. Y. Agapkina
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - M. A. Pustovarova
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - S. P. Korolev
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - D. P. Zyryanova
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - V. V. Ivlev
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - A. V. Totmenin
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - N. M. Gashnikova
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - M. B. Gottikh
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| |
Collapse
|
28
|
Rhee SY, Shafer RW. Geographically-stratified HIV-1 group M pol subtype and circulating recombinant form sequences. Sci Data 2018; 5:180148. [PMID: 30063225 PMCID: PMC6067049 DOI: 10.1038/sdata.2018.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate classification of HIV-1 group M lineages, henceforth referred to as subtyping, is essential for understanding global HIV-1 molecular epidemiology. Because most HIV-1 sequencing is done for genotypic resistance testing pol gene, we sought to develop a set of geographically-stratified pol sequences that represent HIV-1 group M sequence diversity. Representative pol sequences differ from representative complete genome sequences because not all CRFs have pol recombination points and because complete genome sequences may not faithfully reflect HIV-1 pol diversity. We developed a software pipeline that compiled 6,034 one-per-person complete HIV-1 pol sequences annotated by country and year belonging to 11 pure subtypes and 70 CRFs and selected a set of sequences whose average distance to the remaining sequences is minimized for each subtype/CRF and country to generate a Geographically-Stratified set of 716 Pol Subtype/CRF (GSPS) reference sequences. We provide extensive data on pol diversity within each subtype/CRF and country combination. The GSPS reference set will also be useful for HIV-1 pol subtyping.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| |
Collapse
|
29
|
Karamov E, Epremyan K, Siniavin A, Zhernov Y, Cuevas MT, Delgado E, Sánchez-Martínez M, Carrera C, Kornilaeva G, Turgiev A, Bacqué J, Pérez-Álvarez L, Thomson MM. HIV-1 Genetic Diversity in Recently Diagnosed Infections in Moscow: Predominance of A FSU, Frequent Branching in Clusters, and Circulation of the Iberian Subtype G Variant. AIDS Res Hum Retroviruses 2018; 34:629-634. [PMID: 29587492 DOI: 10.1089/aid.2018.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 protease-reverse transcriptase sequences from 62 HIV-1-infected individuals recently diagnosed in Moscow were analyzed. Subtype A former Soviet Union (FSU) (AFSU) variant was the predominant clade (62.9%), followed by subtype B (22.6%), unique recombinants (6.5%), subtype G (6.5%), and CRF01_AE (1.6%). AFSU predominated among people who inject drugs (88.9%) and heterosexually acquired infections (77.8%), while subtype B was the most prevalent genetic form among men who have sex with men (44%), although AFSU was also frequent in this population (36%). Forty-eight (77.4%) viruses branched within intrasubtype clusters, three of which, of subtype B, had a majority of viruses collected outside of FSU. The four subtype G viruses identified in this study belonged to the Portuguese-Spanish (Iberian) variant and, together with three from databases, formed a Russian cluster closely related to viruses from Denmark. This is the first report of the circulation of the Iberian subtype G variant in Russia.
Collapse
Affiliation(s)
- Eduard Karamov
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Khoren Epremyan
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Andrei Siniavin
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Yury Zhernov
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Sánchez-Martínez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Galina Kornilaeva
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Ali Turgiev
- Laboratory of Immunochemistry, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
- Immunomica LLC, Moscow, Russia
| | - Joan Bacqué
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
30
|
Tongo M, Harkins GW, Dorfman JR, Billings E, Tovanabutra S, de Oliveira T, Martin DP. Unravelling the complicated evolutionary and dissemination history of HIV-1M subtype A lineages. Virus Evol 2018; 4:vey003. [PMID: 29484203 PMCID: PMC5819727 DOI: 10.1093/ve/vey003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Subtype A is one of the rare HIV-1 group M (HIV-1M) lineages that is both widely distributed throughout the world and persists at high frequencies in the Congo Basin (CB), the site where HIV-1M likely originated. This, together with its high degree of diversity suggests that subtype A is amongst the fittest HIV-1M lineages. Here we use a comprehensive set of published near full-length subtype A sequences and A-derived genome fragments from both circulating and unique recombinant forms (CRFs/URFs) to obtain some insights into how frequently these lineages have independently seeded HIV-1M sub-epidemics in different parts of the world. We do this by inferring when and where the major subtype A lineages and subtype A-derived CRFs originated. Following its origin in the CB during the 1940s, we track the diversification and recombination history of subtype A sequences before and during its dissemination throughout much of the world between the 1950s and 1970s. Collectively, the timings and numbers of detectable subtype A recombination and dissemination events, the present broad global distribution of the sub-epidemics that were seeded by these events, and the high prevalence of subtype A sequences within the regions where these sub-epidemics occurred, suggest that ancestral subtype A viruses (and particularly sub-subtype A1 ancestral viruses) may have been genetically predisposed to become major components of the present epidemic.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Immunology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Erik Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
31
|
Kazennova E, Laga V, Gromov K, Lebedeva N, Zhukova E, Pronin A, Grezina L, Dement'eva N, Shemshura A, Bobkova M. Genetic Variants of HIV Type 1 in Men Who Have Sex with Men in Russia. AIDS Res Hum Retroviruses 2017; 33:1061-1064. [PMID: 28443684 DOI: 10.1089/aid.2017.0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The men who have sex with men (MSM) population infected with HIV is poorly studied in Russia because of stigma and discrimination. In the first years of the HIV epidemic, the only HIV genetic variant that circulated among MSM was subtype B, usually acquired abroad. Meanwhile, the massive epidemic of HIV in Russia was caused by a highly homogenic subtype A variant, AFSU (A6), and spread mainly among drug users. In this study, 155 HIV pol sequences from MSM collected during the 2006-2016 period were analyzed. Phylogenetic analysis found that 19.4% of the viral sequences from MSM clustered with HIV genetic variants A6 and BFSU, which were previously identified only among drug users and their heterosexual partners. These data show that the MSM population in Russia is gradually becoming less isolated from the general epidemic process. Urgent measures should be taken to prevent the spread of HIV among the MSM population.
Collapse
Affiliation(s)
- Elena Kazennova
- Ivanovsky Institute of Virology, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Vita Laga
- Ivanovsky Institute of Virology, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | - Konstantin Gromov
- Ivanovsky Institute of Virology, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | | | | - Marina Bobkova
- Ivanovsky Institute of Virology, Gamaleya Center for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|