1
|
Zeng W, Yan Q, Du P, Yuan Z, Sun Y, Liu X, Zhang L, Liu X, Ding H, Yi L, Fan S, Chen J, Zhao M. Evolutionary dynamics and adaptive analysis of Seneca Valley virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105488. [PMID: 37558190 DOI: 10.1016/j.meegid.2023.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Over the past 20 years, the Seneca Valley virus (SVV) has emerged in various countries and regions around the world. Infected pigs display symptoms similar to foot-and-mouth disease and other vesicular diseases, causing severe economic losses to affected countries. In recent years, the number of SVV infections has been increasing in Brazil, China, and the United States. In this study, we comprehensively analyzed SVV genomic sequence data from the perspectives of evolutionary dynamics, phylogeography, and codon usage bias. We aimed to gain further insights into SVV's genetic diversity, spatiotemporal distribution patterns, and evolutionary adaptations. Phylogenetic analysis revealed that SVV has evolved into eight distinct lineages. Based on the results of phylogeographic analysis, it is speculated that the United States might have been the source of SVV, from where it subsequently spread to different countries and regions. Moreover, our analysis of positive selection sites in SVV capsid proteins suggests their potential importance in the process of receptor recognition. Finally, codon preference analysis indicates that natural selection has been a primary evolutionary driver influencing SVV codon usage bias. In conclusion, our in-depth investigation into SVV's origin, dissemination, evolution, and adaptation emphasizes the significance of SVV surveillance and control measures.
Collapse
Affiliation(s)
- Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pengfei Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zeng L, Chen M, Wang M, Zhu L, Yan J, Zhang X, Xu J, Zhang S. Enterovirus A Shows Unique Patterns of Codon Usage Bias in Conventional Versus Unconventional Clade. Front Cell Infect Microbiol 2022; 12:941325. [PMID: 35909978 PMCID: PMC9329520 DOI: 10.3389/fcimb.2022.941325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus A (EV-A) species cause hand, foot and mouth disease (HFMD), threatening the health of young children. Understanding the mutual codon usage pattern of the virus and its host(s) has fundamental and applied values. Here, through examining multiple codon usage parameters, we found that the codon usage bias among EV-A strains varies and is clade-specific. EVA76, EVA89, EVA90, EVA91 and EVA92, the unconventional clade of EV-A strains, show unique codon usage pattern relative to the two conventional clades, including EVA71, CVA16, CVA6 and CVA10, etc. Analyses of Effective Number of Codon (ENC), Correspondence Analysis (COA) and Parity Rule 2 (PR2), etc., revealed that the codon usage patterns of EV-A strains are shaped by mutation pressure and natural selection. Based on the neutrality analysis, we determined the dominant role of natural selection in the formation of the codon usage bias of EV-A. In addition, we have determined the codon usage compatibility of potential hosts for EV-A strains using codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses, and found that EV-A showed host-specific codon adaptation patterns in different clades. Finally, we confirmed that the unique codon usage pattern of the unconventional clade affected protein expression level in human cell lines. In conclusion, we identified novel characteristics of codon usage bias in distinct EV-A clades associated with their host range, transmission and pathogenicity.
Collapse
Affiliation(s)
- Liyan Zeng
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming Chen
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liuyao Zhu
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Shuye Zhang, ; Xiaoyan Zhang, ; Jianqing Xu,
| | - Jianqing Xu
- Shanghai Public Health Clinical center AND Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Shuye Zhang, ; Xiaoyan Zhang, ; Jianqing Xu,
| | - Shuye Zhang
- Clinical Center for BioTherapy & Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shuye Zhang, ; Xiaoyan Zhang, ; Jianqing Xu,
| |
Collapse
|
3
|
Zhao S, Cui H, Hu Z, Du L, Ran X, Wen X. Senecavirus A Enhances Its Adaptive Evolution via Synonymous Codon Bias Evolution. Viruses 2022; 14:v14051055. [PMID: 35632797 PMCID: PMC9146685 DOI: 10.3390/v14051055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments. The phylogenetic tree and Median-joining (MJ)-Network of these SVA lineages worldwide were constructed to reveal SVA three-stage genetic development clusters. Furthermore, we analyzed the codon bias of the SVA genome of selected strains and found that SVA could increase the GC content of the third base of some amino acid synonymous codons to enhance the viral RNA adaptive evolution. Our results highlight the impact of recessive mutation of virus codon bias on the evolution of the SVA and uncover a previously underappreciated evolutionary strategy for SVA. They also underline the importance of understanding the genetic evolution of SVA and how SVA adapts to the adverse effects of external stress.
Collapse
Affiliation(s)
- Simiao Zhao
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Huiqi Cui
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenru Hu
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Xuhua Ran
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| |
Collapse
|
4
|
Luo W, Roy A, Guo F, Irwin DM, Shen X, Pan J, Shen Y. Host Adaptation and Evolutionary Analysis of Zaire ebolavirus: Insights From Codon Usage Based Investigations. Front Microbiol 2020; 11:570131. [PMID: 33224111 PMCID: PMC7674656 DOI: 10.3389/fmicb.2020.570131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) has caused several outbreaks as the consequence of spillover events from zoonotic sources and has resulted in huge death tolls. In spite of considerable progress, a thorough know-how regarding EBOV adaptation in various host species and detailed information about the potential reservoirs of EBOV still remains obscure. The present study was executed to examine the patterns of codon usage and its associated influence in the adaptation of EBOV to potential hosts that dwell in Africa, the origin of the viral outbreaks. Correspondence analysis (CA) revealed that the codon usage signature in EBOV is a complex interplay of factors including compositional bias and natural selection, with the latter having a more pronounced impact. Low codon usage bias in EBOV indicates a flexibility of the viruses in adapting to diverse range of hosts with different codon usage architectures. EBOV adaptation in potential hosts, as estimated by codon adaptation index (CAI) and relative codon deoptimization index (RCDI), revealed that the viruses were relatively better adapted to African primates than other mammals examined, which might account for the high fatality rate of primates owing to EBOV infection. Bats have been speculated as natural reservoirs of EBOV. In the present analysis it was interesting to note that EBOV displayed lower degrees of adaptation, as estimated by CAI and RCDI, with bats in comparison to the primate hosts. Lower degrees of adaptation might contribute to long-term co-existence and circulation of the viral pathogens in bat populations. Codon usage patterns of EBOV isolates associated with different outbreaks varied significantly, with discrete patterns between the West and Central African isolates. Additional evolutionary analyses indicated that the West African Epidemic began with an initial spillover infection and there was more than one population of EBOV circulating in the natural reservoir in the Democratic Republic of the Congo. The present study yields valuable information regarding the possible circulation of EBOV in various African mammals.
Collapse
Affiliation(s)
- Wen Luo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Fucheng Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junbin Pan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Wang M, Chen L, Jin W, Wang S. Genetic and evolutionary analysis of enterovirus 71 base dinucleotide. Virusdisease 2020; 31:61-65. [DOI: 10.1007/s13337-019-00564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022] Open
|
6
|
Luo W, Tian L, Gan Y, Chen E, Shen X, Pan J, Irwin DM, Chen RA, Shen Y. The fit of codon usage of human-isolated avian influenza A viruses to human. INFECTION GENETICS AND EVOLUTION 2020; 81:104181. [PMID: 31918040 DOI: 10.1016/j.meegid.2020.104181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/14/2019] [Accepted: 01/05/2020] [Indexed: 01/06/2023]
Abstract
Avian influenza A viruses (AIVs) classify into 18 hemagglutinin (HA) and 11 neuraminidase (NA) subtypes. Even though H1N1 and H3N2 subtypes usually circulate among humans leading to infection, occasionally, H5, H6, H7, H9, and H10 that circulate in poultry also infect humans, and especially H5N1 and H7N9. Efficient virus replication is a critical factor that influences infection. Codon usage of a virus must coevolve with its host for efficient viral replication, therefore, we conduct a comprehensive analysis of codon usage bias in human-isolated AIVs to test their adaptation to host expression system. The relative synonymous codon usage (RSCU) pattern, and the codon adaptation index (CAI) are calculated for this purpose. We find that all human-isolated AIVs tend to eliminate GC and CpG compositions, which may prevent activation of the host innate immune system. Although codon usage differs between AIV subtypes, our data support the conclusion that natural selection has played a major role and mutation pressure a minor role in shaping codon usage bias in all AIVs. Our efforts discover that codon usage of genes encoding surface proteins of H5N1, and the polymerase genes of H7N9 has better fit to the human expression system. This may associate with their better replication and infection in human.
Collapse
Affiliation(s)
- Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Tian
- Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Yingde Gan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Enlong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S 1A8, Canada
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| |
Collapse
|
7
|
Wang M, Li J, Yao MX, Zhang YW, Hu T, Carr MJ, Duchêne S, Zhang XC, Zhang ZJ, Zhou H, Tong YG, Ding SJ, Wang XJ, Shi WF. Genome Analysis of Coxsackievirus A4 Isolates From Hand, Foot, and Mouth Disease Cases in Shandong, China. Front Microbiol 2019; 10:1001. [PMID: 31134033 PMCID: PMC6513881 DOI: 10.3389/fmicb.2019.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Coxsackievirus A4 (CVA4) is one of the most prevalent pathogens associated with hand, foot and mouth disease (HFMD), an acute febrile illness in children, and is also associated with acute localized exanthema, myocarditis, hepatitis and pancreatitis. Despite this, limited CVA4 genome sequences are currently available. Herein, complete genome sequences from CVA4 strains (n = 21), isolated from patients with HFMD in Shandong province, China between 2014 and 2016, were determined and phylogenetically characterized. Phylogenetic analysis of the VP1 gene from a larger CVA4 collection (n = 175) showed that CVA4 has evolved into four separable genotypes: A, B, C, and D; and genotype D could be further classified in to two sub-genotypes: D1 and D2. Each of the 21 newly described genomes derived from isolates that segregated with sub-genotype D2. The CVA4 genomes displayed significant intra-genotypic genetic diversity with frequent synonymous substitutions occurring at the third codon positions, particularly within the P2 region. However, VP1 was relatively stable and therefore represents a potential target for molecular diagnostics assays and also for the rational design of vaccine epitopes. The substitution rate of VP1 was estimated to be 5.12 × 10-3 substitutions/site/year, indicative of ongoing CVA4 evolution. Mutations at amino acid residue 169 in VP1 gene may be responsible for differing virulence of CVA4 strains. Bayesian skyline plot analysis showed that the population size of CVA4 has experienced several dynamic fluctuations since 1948. In summary, we describe the phylogenetic and molecular characterization of 21 complete genomes from CVA4 isolates which greatly enriches the known genomic diversity of CVA4 and underscores the need for further surveillance of CVA4 in China.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Ming-Xiao Yao
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xing-Cheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Zhen-Jie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Yi-Gang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xian-Jun Wang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wei-Feng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| |
Collapse
|
8
|
Zhang Z, Dong Z, Wang Q, Carr MJ, Li J, Liu T, Li D, Shi W. Characterization of an inactivated whole-virus bivalent vaccine that induces balanced protective immunity against coxsackievirus A6 and A10 in mice. Vaccine 2018; 36:7095-7104. [PMID: 30316529 DOI: 10.1016/j.vaccine.2018.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 08/15/2018] [Accepted: 09/01/2018] [Indexed: 11/28/2022]
Abstract
Coxsackievirus A6 (CVA6) and CVA10 are two of the major pathogens associated with hand, foot and mouth disease (HFMD) in children. The majority of CVA6 and CVA10 infections result in mild, self-limiting episodes (fever and herpangina) in pediatric populations; however, in some cases, can proceed to severe neurological disease and death. Efforts to mitigate viral transmission to decrease the morbidity and mortality associated with infection would be greatly strengthened by the availability of an efficacious CVA6 and CVA10 bivalent vaccine. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of formaldehyde-inactivated, whole-virus CVA6 and CVA10. We demonstrate that subcutaneous delivery of the bivalent vaccine can induce antigen-specific systemic immune responses, particularly the induction of polyfunctional T cells, which elicit active immunization to achieve a protection rate of >80% in the infected neonatal mice. Furthermore, passive transfer of the antisera from vaccinated mice potently protected recipient mice against CVA6 and CVA10 challenge. Importantly, the bivalent vaccine could induce high levels of IgG and neutralizing antibodies in adult female mice and the maternal antibody transmitted to the recipient mice played an important role in controlling homotypic and heterotypic CVA6 and CVA10 infections and viral replication in vivo. Collectively, these findings indicate that there is no immunological interference between the two antigens with respect to their ability to induce virus-specific immune responses, and thus provides proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Zhaopeng Dong
- The Center for Disease Control and Prevention, Jinshan 201599, Shanghai, China
| | - Qian Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Central Hospital of Taian, Taian 271000, China
| | - Dong Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China; School of Public Health, Taishan Medical University, Taian 271016, China.
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian 271000, China.
| |
Collapse
|
9
|
Tian L, Shen X, Murphy RW, Shen Y. The adaptation of codon usage of +ssRNA viruses to their hosts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:175-179. [PMID: 29864509 PMCID: PMC7106036 DOI: 10.1016/j.meegid.2018.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Viruses depend on their host's cellular structure to survive. Most of them do not have tRNAs, their translation relies on hosts' tRNA pools. Over the course of evolution, viruses needed to optimally exploit cellular processes of their host. Thus, codon usage of a virus should coevolve with its host to efficiently and rapidly replicate. Some viruses can invade a broad spectrum of hosts (BSTVs), while others can invade a narrow spectrum only (NSTVs). Consequently, we test the hypothesis that similarity of codon usage preference and the degree of matching between BSTVs and their hosts will be lower than that of NSTVs, which only need to coevolve with few hosts. We compare the patterns of codon usage in 255 virus genomes to test this hypothesis. Our results show that NSTVs have a higher degree of matching to their hosts' tRNA pools than BSTVs. Further, analysis of the effective number of codons (ENC) infers that codon usage bias of NSTVs is relatively stronger than that of BSTVs. Thus, codon usage of NSTVs tends to better match their host than that of BSTVs. This supports the hypothesis that viruses adapt to the expression system of their host(s).
Collapse
Affiliation(s)
- Lin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Robert W Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto M5S 2C6, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
10
|
Rapid detection of hand, foot and mouth disease enterovirus genotypes by multiplex PCR. J Virol Methods 2018; 258:7-12. [PMID: 29758237 DOI: 10.1016/j.jviromet.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022]
Abstract
Hand, foot and mouth disease (HFMD) is a pediatric disease associated with infection by enterovirus (EV) genotypes. The major HFMD EV pathogens are enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16); however, recently, coxsackievirus A6 (CVA6) and coxsackievirus A10 (CVA10) have also emerged. EV genotypes cannot be distinguished on clinical grounds and a new methodology for the rapid detection of the four major HFMD EV genotypes is urgently required. In the present study, a multiplex real-time PCR assay was established for the simultaneous detection of CVA6, CVA10, CVA16 and EVA71. The specificity and sensitivity of the assay was determined on a validation panel of clinical samples, comprising cerebrospinal fluid (n = 51), blood (n = 39), feces (n = 58) and throat swabs (n = 29). The results showed that the multiplex real-time PCR exhibited high specificity, no cross-reactivity with other EV genotypes, lower limits of detection for CVA6, CVA10, CVA16 and EVA71 were 4 × 103, 4 × 102, 5 × 102, and 3 × 103 copies/μL, respectively and had comparable sensitivity to singleplex assays testing clinical samples. The multiplex real-time PCR methodology established in this study can be employed for the rapid detection of the four most prevalent HFMD-associated EVs, for epidemiologic surveillance of circulating EV genotypes and for assessing treatment responses and vaccine studies.
Collapse
|