1
|
Tang X, Lu L, Li X, Huang P. Bridging Cancer and COVID-19: The Complex Interplay of ACE2 and TMPRSS2. Cancer Med 2025; 14:e70829. [PMID: 40145441 PMCID: PMC11947763 DOI: 10.1002/cam4.70829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic presents heightened risks for cancer patients, who are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe outcomes due to immunosuppression from both the malignancy and anticancer therapies. This review investigates the dual roles of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in SARS-CoV-2 infection among cancer patients. ACE2, the vital entry receptor for SARS-CoV-2, is overexpressed in certain tumors such as colon adenocarcinoma, renal carcinomas, pancreatic adenocarcinoma, and lung adenocarcinoma, potentially increasing viral susceptibility. Paradoxically, ACE2 also exhibits tumor-suppressive properties by inhibiting angiogenesis and modulating the tumor microenvironment, leading to improved patient prognoses in some cancers like breast cancer. TMPRSS2, essential for viral entry, shows decreased expression in several tumors but acts as a prognostic biomarker in prostate and lung cancers. This review illustrates the complexity of therapeutically targeting ACE2 and TMPRSS2 due to their contrasting roles in cancer progression and viral entry. We analyze the expression levels of ACE2 and TMPRSS2 in relation to immune cell infiltration and patient outcomes, and propose personalized therapeutic strategies. Furthermore, we underscore the necessity for multidisciplinary approaches, integrating antiviral treatments with cancer therapies and tailoring interventions based on individual molecular profiles. This approach to personalized medicine seeks to enhance treatment results and better manage cancer patients who have contracted SARS-CoV-2.
Collapse
Affiliation(s)
- Xuerui Tang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Liuzhi Lu
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaoping Li
- Clinical LaboratoryTongxiang First People's HospitalZhejiangChina
| | - Panpan Huang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
2
|
Ramu A, Ak L, Chinnappan J. Identification of prostate cancer associated genes for diagnosis and prognosis: a modernized in silico approach. Mamm Genome 2024; 35:683-710. [PMID: 39153107 DOI: 10.1007/s00335-024-10060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths in men. Diagnosing PCa relies on molecular markers known as diagnostic biomarkers, while prognostic biomarkers are used to identify key proteins involved in PCa treatments. This study aims to gather PCa-associated genes and assess their potential as either diagnostic or prognostic biomarkers for PCa. A corpus of 152,064 PCa-related data from PubMed, spanning from May 1936 to December 2020, was compiled. Additionally, 4199 genes associated with PCa terms were collected from the National Center of Biotechnology Information (NCBI) database. The PubMed corpus data was extracted using pubmed.mineR to identify PCa-associated genes. Network and pathway analyses were conducted using various tools, such as STRING, DAVID, KEGG, MCODE 2.0, cytoHubba app, CluePedia, and ClueGO app. Significant marker genes were identified using Random Forest, Support Vector Machines, Neural Network algorithms, and the Cox Proportional Hazard model. This study reports 3062 unique PCa-associated genes along with 2518 corresponding unique PMIDs. Diagnostic markers such as IL6, MAPK3, JUN, FOS, ACTB, MYC, and TGFB1 were identified, while prognostic markers like ACTB and HDAC1 were highlighted in PubMed. This suggests that the potential target genes provided by PubMed data outweigh those in the NCBI database.
Collapse
Affiliation(s)
- Akilandeswari Ramu
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Lekhashree Ak
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
4
|
Militaru FC, Militaru V, Crisan N, Bocsan IC, Udrea AA, Catana A, Kutasi E, Militaru MS. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. BIOMOLECULES & BIOMEDICINE 2023; 23:760-771. [PMID: 37021836 PMCID: PMC10494850 DOI: 10.17305/bb.2023.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer is one of the most significant causes of morbidity and mortality in male patients. The incidence increases with age, and it is higher among African Americans. The occurrence of prostate cancer is associated with many risk factors, including genetic and hereditary predisposition. The most common genetic syndromes associated with prostate cancer risk are BRCA-associated hereditary breast and ovarian cancer (HBOC) and Lynch syndrome. Local-regional therapy, i.e., surgery is beneficial in early-stage prostate cancer management. Advanced and metastatic prostate cancers require systemic therapies, including hormonal inhibition, chemotherapy, and targeted agents. Most prostate cancers can be treated by targeting the androgen-receptor pathway and decreasing androgen production or binding to androgen receptors (AR). Castration-resistant prostate cancer (CRPC) usually involves the PI3K/AKT/mTOR pathway and requires targeted therapy. Specific molecular therapy can target mutated cell lines in which DNA defect repair is altered, caused by mutations of BRCA2, partner and localizer of BRCA2 (PALB2), and phosphatase and tensin homolog (PTEN) or the transmembrane protease serine 2-ERG (TMPRSS2-ERG) fusion. Most benefits were demonstrated in cyclin dependent-kinase 12 (CDK12) mutated cell lines when treated with anti-programmed cell death protein 1 (PD1) therapy. Therapies targeting p53 and AKT are the subject of ongoing clinical trials. Many genetic defects are listed as diagnostic, prognostic, and clinically actionable markers in prostate cancer. Androgen receptor splice variant 7 (AR-V7) is an important oncogenic driver and an early diagnostic and prognostic marker, as well as a therapeutic target in hormone-resistant CRPC. This review summarizes the pathophysiological mechanisms and available targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Florentina Claudia Militaru
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Medisprof Cancer Center, Cluj-Napoca, Romania
| | - Valentin Militaru
- Medisprof Cancer Center, Cluj-Napoca, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Clinical County Hospital, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea Catana
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Institute of Oncology I. Chiricuta, Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Chen Y, Zhang C, Wang N, Feng Y. Deciphering suppressive effects of Lianhua Qingwen Capsule on COVID-19 and synergistic effects of its major botanical drug pairs. Chin J Nat Med 2023; 21:383-400. [PMID: 37245876 PMCID: PMC10214843 DOI: 10.1016/s1875-5364(23)60455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/30/2023]
Abstract
The COVID-19 pandemic has resulted in excess deaths worldwide. Conventional antiviral medicines have been used to relieve the symptoms, with limited therapeutic effect. In contrast, Lianhua Qingwen Capsule is reported to exert remarkable anti-COVID-19 effect. The current review aims to: 1) uncover the main pharmacological actions of Lianhua Qingwen Capsule for managing COVID-19; 2) verify the bioactive ingredients and pharmacological actions of Lianhua Qingwen Capsule by network analysis; 3) investigate the compatibility effect of major botanical drug pairs in Lianhua Qingwen Capsule; and 4) clarify the clinical evidence and safety of the combined therapy of Lianhua Qingwen Capsule and conventional drugs. Numerous bioactive ingredients in Lianhu Qingwen, such as quercetin, naringenin, β-sitosterol, luteolin, and stigmasterol, were identified to target host cytokines, and to regulate the immune defence in response to COVID-19. Genes including androgen receptor (AR), myeloperoxidase (MPO), epidermal growth factor receptor (EGFR), insulin (INS), and aryl hydrocarbon receptor (AHR) were found to be significantly involved in the pharmacological actions of Lianhua Qingwen Capsule against COVID-19. Four botanical drug pairs in Lianhua Qingwen Capsule were shown to have synergistic effect for the treatment of COVID-19. Clinical studies demonstrated the medicinal effect of the combined use of Lianhua Qingwen Capsule and conventional drugs against COVID-19. In conclusion, the four main pharmacological mechanisms of Lianhua Qingwen Capsule for managing COVID-19 are revealed. Therapeutic effect has been noted against COVID-19 in Lianhua Qingwen Capsule.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
6
|
Roozbeh J, Janfeshan S, Afshari A, Doostkam A, Yaghobi R. A Review of Special Considerations on Insulin Resistance Induced Hyperandrogenemia in Women with Polycystic Ovary Syndrome: A Prominent COVID-19 Risk Factor. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:168-179. [PMID: 37091038 PMCID: PMC10116349 DOI: 10.22088/ijmcm.bums.11.2.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/09/2022] [Accepted: 11/09/2022] [Indexed: 04/25/2023]
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infecting mechanism depends on hosting angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as essential components and androgens as regulators for inducing the expression of these components. Therefore, hyperandrogenism-related disease such as polycystic ovary syndrome (PCOS) in insulin resistant women in reproductive-age is a high-risk factor for SARS-CoV-2 infection. Here, we describe the signaling pathways that might increase the susceptibility and severity of this new pandemic in PCOS women with insulin resistance (IR). Luteinizing hormone and insulin increase the risk of SARS-CoV-2 infection in these patients via the induction of steroidogenic enzymes expression through cAMP-response element binding protein and Forkhead box protein O1 (FOXO1), respectively. TMPRSS2 expression is activated through phosphorylation of FOXO1 in ovaries. In other words, SARS-CoV-2 infection is associated with temporary IR by affecting ACE2 and disturbing β-pancreatic function. Therefore, PCOS, IR, and SARS-CoV-2 infection are three corners of the triangle that have complicated relations, and their association might increase the risk of SARS-CoV-2 infection and severity.
Collapse
Affiliation(s)
- Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Health influence of SARS-CoV-2 (COVID-19) on cancer: a review. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1395-1405. [PMID: 36269132 PMCID: PMC9828497 DOI: 10.3724/abbs.2022147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The novel coronavirus, namely, SARS-CoV-2 (COVID-19), broke out two years ago and has caused major global health issues. Adequate treatment options are still lacking for the management of COVID-19 viral infections. Many patients afflicted with COVID-19 may range from asymptomatic to severe symptomatic, triggering poor clinical outcomes, morbidity, and mortality. Cancer is one of the leading causes of death worldwide. It is pertinent to re-examine cancer prevalence during the COVID-19 pandemic to prevent mortality and complications. Understanding the impact of SARS-CoV-2 on cancer is key to appropriate healthcare measures for the treatment and prevention of this vulnerable population. Data was acquired from PubMed using key search terms. Additional databases were utilized, such as the Centers for Disease Prevention and Control, American Cancer Society (ACS), and National Cancer Institute (NCI). Cancer patients are more prone to SARS-CoV-2 infection and exhibit poor health outcomes, possibly due to a chronic immunosuppressive state and anticancer therapies. Male sex, older age, and active cancer disease or previous cancer are risk factors for COVID-19 infection, leading to possible severe complications, including morbidity or mortality. The speculated mechanism for potentially higher mortality or COVID-19 complications is through reduced immune system function and inflammatory processes through cancer disease, anticancer therapy, and active COVID-19 infection. This review includes prostate, breast, ovarian, hematologic, lung, colorectal, esophageal, bladder, pancreatic, cervical, and head and neck cancers. This review should help better maintain the health of cancer patients and direct clinicians for COVID-19 prevention to improve the overall health outcomes.
Collapse
|
8
|
Samy A, Maher MA, Abdelsalam NA, Badr E. SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host interaction network-based analysis. Sci Rep 2022; 12:11934. [PMID: 35831333 PMCID: PMC9279364 DOI: 10.1038/s41598-022-15898-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a global pandemic impacting the daily living of millions. As variants of the virus evolve, a complete comprehension of the disease and drug targets becomes a decisive duty. The Omicron variant, for example, has a notably high transmission rate verified in 155 countries. We performed integrative transcriptomic and network analyses to identify drug targets and diagnostic biomarkers and repurpose FDA-approved drugs for SARS-CoV-2. Upon the enrichment of 464 differentially expressed genes, pathways regulating the host cell cycle were significant. Regulatory and interaction networks featured hsa-mir-93-5p and hsa-mir-17-5p as blood biomarkers while hsa-mir-15b-5p as an antiviral agent. MYB, RRM2, ERG, CENPF, CIT, and TOP2A are potential drug targets for treatment. HMOX1 is suggested as a prognostic biomarker. Enhancing HMOX1 expression by neem plant extract might be a therapeutic alternative. We constructed a drug-gene network for FDA-approved drugs to be repurposed against the infection. The key drugs retrieved were members of anthracyclines, mitotic inhibitors, anti-tumor antibiotics, and CDK1 inhibitors. Additionally, hydroxyquinone and digitoxin are potent TOP2A inhibitors. Hydroxyurea, cytarabine, gemcitabine, sotalol, and amiodarone can also be redirected against COVID-19. The analysis enforced the repositioning of fluorouracil and doxorubicin, especially that they have multiple drug targets, hence less probability of resistance.
Collapse
Affiliation(s)
- Asmaa Samy
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Mohamed A Maher
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Nehal Adel Abdelsalam
- University of Science and Technology, Zewail City, Giza, 12578, Egypt.,Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City, Giza, 12578, Egypt. .,Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
9
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
10
|
Ebner B, Volz Y, Mumm JN, Stief CG, Magistro G. The COVID-19 pandemic - what have urologists learned? Nat Rev Urol 2022; 19:344-356. [PMID: 35418709 PMCID: PMC9007269 DOI: 10.1038/s41585-022-00586-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
On 11 March 2020, the WHO declared the coronavirus disease 2019 (COVID-19) outbreak a pandemic and COVID-19 emerged as one of the biggest challenges in public health and economy in the twenty-first century. The respiratory tract has been the centre of attention, but COVID-19-associated complications affecting the genitourinary tract are reported frequently, raising concerns about possible long-term damage in these organs. The angiotensin-converting enzyme 2 (ACE2) receptor, which has a central role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, is highly expressed in the genitourinary tract, indicating that these organs could be at a high risk of cell damage. The detection of SARS-CoV-2 in urine and semen is very rare; however, COVID-19 can manifest through urological symptoms and complications, including acute kidney injury (AKI), which is associated with poor survival, severe structural changes in testes and impairment of spermatogenesis, and hormonal imbalances (mostly secondary hypogonadism). The effect of altered total testosterone levels or androgen deprivation therapy on survival of patients with COVID-19 was intensively debated at the beginning of the pandemic; however, androgen inhibition did not show any effect in preventing or treating COVID-19 in a clinical study. Thus, urologists have a crucial role in detecting and managing damage of the genitourinary tract caused by COVID-19.
Collapse
Affiliation(s)
- Benedikt Ebner
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Yannic Volz
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Jan-Niclas Mumm
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
11
|
Sharma NK, Sarode SC, Sarode GS, Patil S. Molecular Landscape of Lung Epithelium Contributes to High Severity
and Comorbidities for COVID-19 and Lung Cancer. CURRENT CANCER THERAPY REVIEWS 2022; 18:2-6. [DOI: 10.2174/1573394717666210705115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
:
The heterogeneous and complex nature of cancer is extensively revealed at molecular,
genetic, and tissue microenvironment levels. Currently, co-occurrence of coronavirus disease 2019
(COVID-19) to lung cancer patients and severity of infections by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) have been understood at preclinical and clinical levels. However,
molecular and cellular insights are not discussed in those papers that support the increased
COVID-19 severity and comorbidities in several cancer types, including lung cancer patients.
Therefore, this perspective highlights the basis of high severity and comorbidities among lung cancer
patients infected by COVID-19 with an emphasis on translational aspects.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil
Vidyapeeth, Pune, Maharashtra, India, 411033
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental
College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental
College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and
Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
12
|
Cheng J, Zhou J, Fu S, Fu J, Zhou B, Chen H, Fu J, Wei C. Prostate adenocarcinoma and COVID-19: The possible impacts of TMPRSS2 expressions in susceptibility to SARS-CoV-2. J Cell Mol Med 2021; 25:4157-4165. [PMID: 33609069 PMCID: PMC8013364 DOI: 10.1111/jcmm.16385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
TMPRSS2 (OMIM: 602060) is a cellular protease involved in many physiological and pathological processes, and it facilitates entry of viruses such as SARS‐CoV‐2 into host cells. It is important to predict the prostate's susceptibility to SARS‐CoV‐2 infection in cancer patients and the disease outcome by assessing TMPRSS2 expression in cancer tissues. In this study, we conducted the expression profiles of the TMPRSS2 gene for COVID‐19 in different normal tissues and PRAD (prostate adenocarcinoma) tumour tissues. TMPRSS2 is highly expressed in normal tissues including the small intestine, prostate, pancreas, salivary gland, colon, stomach, seminal vesicle and lung, and is increased in PRAD tissues, indicating that SARS‐CoV‐2 might attack not only the lungs and other normal organs, but also in PRAD cancer tissues. Hypomethylation of TMPRSS2 promoter may not be the mechanism for TMPRSS2 overexpression in PRAD tissues and PRAD pathogenesis. TMPRSS2 expresses eleven isoforms in PRAD tissues, with the TMPRSS2‐001 isoform expressed highest and followed by TMPRSS2‐201. Further isoform structures prediction showed that these two highly expressed isoforms have both SRCR_2 and Trypsin (Tryp_SPc) domains, which may be essential for TMPRSS2 functional roles for tumorigenesis and entry for SARS‐CoV‐2 in PRAD patients. Analyses of functional annotation and enrichment in TMPRSS2 showed that TMPRSS2 is mostly enriched in regulation of viral entry into host cells, protein processing and serine‐type peptidase activity. TMPRSS2 is also associated with prostate gland cancer cell expression, different complex(es) formation, human influenza and carcinoma, pathways in prostate cancer, influenza A, and transcriptional misregulation in cancer. Altogether, even though high expression of TMPRSS2 may not be favourable for PRAD patient's survival, increased expression in these patients should play roles in susceptibility of the SARS‐CoV‐2 infection and clinical severity for COVID‐19, highlighting the value of protective actions of PRAD cases by targeting or androgen‐mediated therapeutic strategies in the COVID‐19 pandemic.
Collapse
Affiliation(s)
- Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ju Zhou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Baixu Zhou
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|