1
|
Ding X, Lin Q, Zhao J, Fu Y, Zheng Y, Mo R, Zhang L, Zhang B, Chen J, Xie T, Wu H, Ding Y. Synonymous mutations in TLR2 and TLR9 genes decrease COPD susceptibility in the Chinese Han population. Pulmonology 2024; 30:230-238. [PMID: 37585174 DOI: 10.1016/j.pulmoe.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION Previous studies have found associations between polymorphisms in some candidate genes and chronic obstructive pulmonary disease (COPD) risk. However, the association between TLR2 and TLR9 polymorphisms and COPD risk remains uncertain. METHODS Four variants (rs352140, rs3804099, rs3804100, and rs5743705) of the TLR2 and TLR9 genes in 540 COPD patients and 507 healthy controls were genotyped using the Agena MassARRAY system. Odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the association of TLR2 and TLR9 polymorphisms with COPD risk by logistic regression analysis. RESULTS TLR9-rs352140, TLR2-rs3804100, and TLR2-rs5743705 were related to a lower risk of COPD among Chinese people and the significance still existed after Bonferroni correction. Additionally, rs3804099, rs3804100, and rs352140 were found to be associated with COPD development in different subgroups (males, age ≤ 68 years, smokers, BMI < 24 kg/m2, and acute exacerbation). CONCLUSIONS Our findings indicated that TLR9 and TLR2 polymorphisms had protective effects on the development of COPD among Chinese people.
Collapse
Affiliation(s)
- X Ding
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - Q Lin
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - J Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - Y Fu
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - Y Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - R Mo
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - L Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - B Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - J Chen
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - T Xie
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China.
| | - H Wu
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China.
| | - Y Ding
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China; Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, China.
| |
Collapse
|
2
|
Sena-Dos-Santos C, Cavalcante GC, Marques D, Silva CS, de Moraes MR, Pinto P, Santana-da-Silva MN, Ferraz RS, Costa SPT, Ventura AMR, Póvoa MM, Cunha MG, Ribeiro-Dos-Santos Â. Association of apoptosis-related variants to malaria infection and parasite density in individuals from the Brazilian Amazon. Malar J 2023; 22:295. [PMID: 37794476 PMCID: PMC10552311 DOI: 10.1186/s12936-023-04729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In malaria infection, apoptosis acts as an important immunomodulatory mechanism that leads to the elimination of parasitized cells, thus reducing the parasite density and controlling immune cell populations. Here, it was investigated the association of INDEL variants in apoptotic genes-rs10562972 (FAS), rs4197 (FADD), rs3834129 and rs59308963 (CASP8), rs61079693 (CASP9), rs4647655 (CASP3), rs11269260 (BCL-2), and rs17880560 (TP53)-and the influence of genetic ancestry with susceptibility to malaria and parasite density in an admixed population from the Brazilian Amazon. METHODS Total DNA was extracted from 126 malaria patients and 101 uninfected individuals for investigation of genetic ancestries and genotypic distribution of apoptosis-related variants by Multiplex PCR. Association analyses consisted of multivariate logistic regressions, considering the following comparisons: (i) DEL/DEL genotype vs. INS/DEL + INS/INS; and (ii) INS/INS vs. INS/DEL + DEL/DEL. RESULTS Individuals infected by Plasmodium falciparum had significantly higher African ancestry proportions in comparison to uninfected controls, Plasmodium vivax, and mixed infections. The INS/INS genotype of rs3834129 (CASP8) seemed to increase the risk for P. falciparum infection (P = 0.038; OR = 1.867; 95% CI 0.736-3.725), while the DEL/DEL genotype presented a significant protective effect against infection by P. falciparum (P = 0.049; OR = 0.446; 95% CI 0.185-0.944) and mixed infection (P = 0.026; OR = 0.545; 95% CI 0.281-0.996), and was associated with lower parasite density in P. falciparum malaria (P = 0.009; OR = 0.383; 95% CI 0.113-1.295). Additionally, the INS/INS genotype of rs10562972 (FAS) was more frequent among individuals infected with P. vivax compared to P. falciparum (P = 0.036; OR = 2.493; 95% CI 1.104-4.551), and the DEL/DEL genotype of rs17880560 (TP53) was significantly more present in patients with mono-infection by P. vivax than in individuals with mixed infection (P = 0.029; OR = 0.667; 95% CI 0.211-1.669). CONCLUSIONS In conclusion, variants in apoptosis genes are associated with malaria susceptibility and parasite density, indicating the role of apoptosis-related genetic profiles in immune responses against malaria infection.
Collapse
Affiliation(s)
- Camille Sena-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Diego Marques
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Caio S Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Milene Raiol de Moraes
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Dermatoimmunology, Federal University of Pará (UFPA), Marituba, Brazil
| | - Mayara Natália Santana-da-Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Rafaella S Ferraz
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Ana Maria R Ventura
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Marinete M Póvoa
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Maristela G Cunha
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil.
- Program of Oncology and Medical Sciences, Oncology Research Center, Belém, Brazil.
| |
Collapse
|
3
|
de Jesus MCS, Cerilo-Filho M, Ramirez ADR, Menezes RAO, Gomes MSM, Cassiano GC, Gurgel RQ, Silva JRS, Moura TR, Pratt-Riccio LR, Baptista ARS, Storti-Melo LM, Machado RLD. Influence of trem-1 gene polymorphisms on cytokine levels during malaria by Plasmodium vivax in a frontier area of the Brazilian Amazon. Cytokine 2023; 169:156264. [PMID: 37327529 DOI: 10.1016/j.cyto.2023.156264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The immunopathology during malaria depends on the level of inflammatory response generated. In this scenario, the TREM-1 has been associated with the severity of infectious diseases and could play an important role in the inflammatory course of malaria. We aimed to describe the allelic and genotypic frequency of four polymorphisms in the trem-1 gene in Plasmodium vivax-infected patients and to verify the association of these polymorphisms with clinical and immunological factors in a frontier area of the Brazilian Amazon. METHODS We included 76 individuals infected with P. vivax and 144 healthy controls living in the municipality of Oiapoque, Amapá, Brazil. The levels of TNF-α, IL-10, IL-2, IL-4, IL-5, and IFN-γ were measured by flow cytometry, while IL-6, sTREM-1, and antibodies against PvMSP-119 were evaluated by ELISA. The SNPs were genotyped by qPCR technique. Polymorphisms analysis, allelic and genotype, frequencies, and HWE calculation were determined by x2 test in R Software. The association between the parasitemia, gametocytes, antibodies, cytokines, and sTREM-1 with the genotypes of malaria and control groups was performed using the Kruskal-Wallis test, these analyzes were conducted in SPSS Software, at 5% significance level. RESULTS All SNPs were successfully genotyped. Allelic and genotypic distribution was in Hardy-Weinberg Equilibrium. Furthermore, several associations were identified between malaria and control groups, with increased levels of IL-5, IL-6, IL-10, TNF-α, and IFN-γ in the infected individuals with rs6910730A, rs2234237T, rs2234246T, rs4711668C alleles compared to the homozygous wild-type and heterozygous genotypes of the controls (p-value < 0.05). No association was found for these SNPs and the levels of IL-2, and sTREM-1. CONCLUSIONS The SNPs on the trem-1 gene are associated with the effector molecules of the innate immunity and may contribute to the identification and effective participation of trem-1 in the modulation of the immune response. This association may be essential for the establishment of immunization strategies against malaria.
Collapse
Affiliation(s)
- Myrela C S de Jesus
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil.
| | - Marcelo Cerilo-Filho
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Aina D R Ramirez
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Rubens A O Menezes
- Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil; Postgraduate Program in Health Sciences, Federal University of Amapá (UNIFAP), Macapá 68903-419, Amapá, Brazil
| | - Margarete S M Gomes
- Superintendence of Health Surveillance of the State of Amapá, Macapá 68902-865, Amapá, Brazil
| | | | - Ricardo Q Gurgel
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - José R S Silva
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Tatiana R Moura
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Lilian R Pratt-Riccio
- Laboratory for Malaria Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Andrea R S Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil
| | - Luciane M Storti-Melo
- Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil; Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Ricardo L D Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói 24210-130, Rio de Janeiro, Brazil; Postgraduate Program in Parasite Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
4
|
Hu M, Wei J, Hao J, Jin T, Li B. Impact of TREM1 Variants on the Risk and Prognosis of Glioma in the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:707-715. [PMID: 37426899 PMCID: PMC10327902 DOI: 10.2147/pgpm.s403870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2023] Open
Abstract
Background Glioma is the main pathological subtype of brain tumors with high mortality. Objective This study aimed to elucidate the correlation between TREM1 variants and glioma risk in the Chinese Han population. Methods Genotyping of six variants of TREM1 was completed by Agena MassARRAY platform in 1061 subjects (503 controls and 558 glioma patients). The relationship between TREM1 polymorphisms and glioma risk was calculated using the logistic regression model, with odds ratio (OR) and 95% confidence intervals (CIs). A multifactor dimensionality reduction (MDR) method was performed to assess SNP-SNP interactions to predict glioma risk. Results In this research, overall analysis illustrated an association between TREM1 rs9369269 and an increased risk of glioma. Rs9369269 was also related to the risk of glioma in patients aged ≤40 years and females. Subjects with rs9369269 AC genotype were likely to obtain glioma compared to people with CC genotype (patients with astroglioma vs healthy people). Compared to TT genotype carriers, carriers with AT genotype of rs1351835 were significantly associated with overall survival (OS). Conclusion Taken together, the study identified the association between TREM1 variants and glioma risk and TREM1 variants were significantly associated with the prognosis of glioma. In the future, larger samples are needed to verify the results.
Collapse
Affiliation(s)
- Mingjun Hu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Department of Neurosurgery, Xi’an Chang’an District Hospital, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jie Wei
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jie Hao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Tianbo Jin
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Bin Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
5
|
Pastana LF, Silva TA, Gellen LPA, Vieira GM, de Assunção LA, Leitão LPC, da Silva NM, Coelho RDCC, de Alcântara AL, Vinagre LWMS, Rodrigues JCG, Borges Leal DFDV, Fernandes MR, de Souza SJ, Kroll JE, Ribeiro-dos-Santos AM, Burbano RMR, Guerreiro JF, de Assumpção PP, Ribeiro-dos-Santos ÂC, dos Santos SEB, dos Santos NPC. The Genomic Profile Associated with Risk of Severe Forms of COVID-19 in Amazonian Native American Populations. J Pers Med 2022; 12:jpm12040554. [PMID: 35455670 PMCID: PMC9027999 DOI: 10.3390/jpm12040554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic factors associated with COVID-19 disease outcomes are poorly understood. This study aimed to associate genetic variants in the SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, and ABO genes with the risk of severe forms of COVID-19 in Amazonian Native Americans, and to compare the frequencies with continental populations. The study population was composed of 64 Amerindians from the Amazon region of northern Brazil. The difference in frequencies between the populations was analyzed using Fisher’s exact test, and the results were significant when p ≤ 0.05. We investigated 64 polymorphisms in 7 genes; we studied 47 genetic variants that were new or had impact predictions of high, moderate, or modifier. We identified 15 polymorphisms with moderate impact prediction in 4 genes (ABO, CXCR6, FYCO1, and SLC6A20). Among the variants analyzed, 18 showed significant differences in allele frequency in the NAM population when compared to others. We reported two new genetic variants with modifier impact in the Amazonian population that could be studied to validate the possible associations with COVID-19 outcomes. The genomic profile of Amazonian Native Americans may be associated with protection from severe forms of COVID-19. This work provides genomic data that may help forthcoming studies to improve COVID-19 outcomes.
Collapse
Affiliation(s)
- Lucas Favacho Pastana
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Thays Amâncio Silva
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Laura Patrícia Albarello Gellen
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Giovana Miranda Vieira
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Letícia Almeida de Assunção
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Luciana Pereira Colares Leitão
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Natasha Monte da Silva
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Rita de Cássia Calderaro Coelho
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Angélica Leite de Alcântara
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Lui Wallacy Morikawa Souza Vinagre
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Juliana Carla Gomes Rodrigues
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Diana Feio da Veiga Borges Leal
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Marianne Rodrigues Fernandes
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal 59076-550, Brazil; (S.J.d.S.); (J.E.K.)
- BioME, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil
- Institute of Systems Genetics, West China Hospital, University of Sichuan, Chengdu 610041, China
| | - José Eduardo Kroll
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal 59076-550, Brazil; (S.J.d.S.); (J.E.K.)
| | - André Mauricio Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Rommel Mario Rodríguez Burbano
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Paulo Pimentel de Assumpção
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Ândrea Campos Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Sidney Emanuel Batista dos Santos
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Ney Pereira Carneiro dos Santos
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
- Correspondence: ; Tel.: +55-(91)-98107-0850
| |
Collapse
|