1
|
Ndiaye AJS, Cortaderona S, Delorme L, Beye M, Kacel I, Bossi V, Lo G, Leye N, Padane A, Diop‐Ndiaye H, Kane CT, Diagne NR, Sokhna C, Mboup S, Fournier P. Whole Genome Sequencing and Genetic Diversity of Respiratory Viruses Detected in Children With Acute Respiratory Infections: A One-Year Cross-Sectional Study in Senegal. J Med Virol 2025; 97:e70342. [PMID: 40207925 PMCID: PMC11984337 DOI: 10.1002/jmv.70342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Acute respiratory infections (ARI) are a health priority, especially in countries with limited resources. They are a major cause of morbidity and mortality, especially among children and the elderly. In Senegal, the endemic circulation of respiratory viruses other than influenza has been demonstrated. However, there is a paucity of data exploring the genetic diversity of these viruses based on whole-genome sequencing. In this study, we present data on the genetic diversity of respiratory viruses in children under 15 years old in Senegal, including an overview of the different pathogens detected. Between November 2022 and November 2023, we collected nasopharyngeal swabs from children seen in curative consultations for symptoms of acute respiratory infections. Of the 156 children included, 73.7% tested positive for at least one pathogen. The most frequently detected virus was rhinovirus (50.0%), followed by influenza B (41.6%) and human parainfluenza virus type 3 (7.6%). Combinations of rhinovirus/influenza B, human parainfluenza virus type 2/human parainfluenza virus type 4, and rhinovirus/influenza B/adenovirus were the most frequently identified. A statistically significant association was detected between some of the viruses detected. A high genetic diversity of respiratory viruses circulating in children was revealed. The strains were phylogenetically close to various strains circulating worldwide, suggesting a global circulation of respiratory viruses. Our study provides the first complete genome sequences of human parainfluenza viruses type 2, 3, 4 and human bocavirus from Senegal and thus contributes to the enrichment of international databases on sequences from Senegal and underlines the importance of sequencing in the dynamics of pathogen circulation.
Collapse
Affiliation(s)
- Anna Julienne Selbé Ndiaye
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
- IHU‐Méditerranée InfectionMarseilleFrance
| | - Sebastien Cortaderona
- IHU‐Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ, IRD, SSA, MINESMarseilleFrance
- Aix Marseille Univ, SSA, RITMESMarseilleFrance
| | - Léa Delorme
- IHU‐Méditerranée InfectionMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Mamadou Beye
- Aix Marseille Univ, SSA, RITMESMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Idir Kacel
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Vincent Bossi
- Aix Marseille Univ, SSA, RITMESMarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Gora Lo
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
| | - Nafissatou Leye
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
| | - Abdou Padane
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
| | | | - Coumba Touré Kane
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
| | | | - Cheikh Sokhna
- IHU‐Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ, IRD, SSA, MINESMarseilleFrance
- Aix Marseille Univ, SSA, RITMESMarseilleFrance
| | - Souleymane Mboup
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de FormationDakarSenegal
| | | |
Collapse
|
2
|
Wangui J, Gachara G, Mobegi V, Agoti C, Otieno J, Opanda S, Opot B, Ngeranwa J, Njeru R, Bulimo W. Molecular Analysis of Human Respiratory Syncytial Virus Group B Strains Isolated in Kenya Before and During the Emergence of Pandemic Influenza A/H1N1. Influenza Other Respir Viruses 2025; 19:e70082. [PMID: 39978327 PMCID: PMC11842092 DOI: 10.1111/irv.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND We conducted a retrospective study to explore molecular insights into human respiratory syncytial virus (HRSV) group B strains among patients attending outpatient clinics at government medical facilities both prior and during the onset of Influenza A/H1N1/2009 pandemic outbreak. METHODS We screened 2300 nasopharyngeal swabs using multiplex real time reverse transcriptase polymerase chain reaction. We amplified a segment of the first and second hypervariable regions, as well as the conserved portion of the third domain of the G-gene using HRSV-B specific primers, sequenced by Sanger di-deoxy chain termination method and thereafter analyzed the sequences. RESULTS We characterized the circulating strains into three known genotypes: SAB4 (1.4%), BA7 (1.4%), and multiple variants of BA9 (97.2%). The majority of BA9 viruses were uniquely Kenyan with only 4% aligning with BA9 lineages found elsewhere. The mean evolutionary rate of the HRSV-B was estimated to be 3.08 × 10-3 substitutions per site per year. CONCLUSION Our findings indicate that the circulating HRSV-B viruses in Kenya underwent a slower evolution during the period of 2007-2010. Additionally, our findings reveal the existence of a unique lineage as well as new variants that have not been reported elsewhere to date.
Collapse
Affiliation(s)
- Julia Wangui
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
- Department of BiochemistryKenyatta UniversityNairobiKenya
| | - George Gachara
- Department of Medical Laboratory SciencesKenyatta UniversityNairobiKenya
| | - Victor Mobegi
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - Charles Agoti
- Department of Epidemiology and DemographyKenya Medical Research Institute (KEMRI) ‐ Wellcome Trust ProgramNairobiKenya
| | | | - Silvanos Opanda
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| | - Benjamin Opot
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| | | | - Regina Njeru
- International Livestock Research InstituteNairobiKenya
| | - Wallace Bulimo
- Centre For Virus ResearchKenya Medical Research Institute (KEMRI)NairobiKenya
| |
Collapse
|
3
|
Ndiaye D, Diatta G, Bassene H, Cortaredona S, Sambou M, Ndiaye AJS, Bedotto-Buffet M, Edouard S, Mediannikov O, Sokhna C, Fenollar F. Prevalence of Respiratory Pathogens in Nasopharyngeal Swabs of Febrile Patients with or without Respiratory Symptoms in the Niakhar Area of Rural Senegal. Pathogens 2024; 13:655. [PMID: 39204255 PMCID: PMC11357141 DOI: 10.3390/pathogens13080655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Acute respiratory tract infections are one of the leading causes of morbidity and mortality worldwide. More data are needed on circulating respiratory microorganisms in different geographical areas and ecosystems. We analyzed nasopharyngeal swabs from 500 febrile patients living in the Niakhar area (Senegal), using FTDTM multiplex qPCR and simplex qPCR to target a panel of 25 microorganisms. We detected at least one microorganism for 366/500 patients (73.2%), at least one virus for 193/500 (38.6%), and at least one bacterium for 324/500 (64.8%). The most frequently detected microorganisms were Streptococcus pneumoniae (36.8%), Haemophilus influenzae (35.8%), adenovirus (11.8%), influenza viruses (6.4%), rhinovirus (5.0%), SARS-CoV-2 (4.0%), and RSV (4.0%). The main microorganisms significantly associated with respiratory symptoms, with a p-value ≤ 0.05, were influenza virus (11.9% in patients with respiratory symptoms versus 2.9% in patients without), RSV (6.5% versus 2.6%), metapneumovirus (5.4% versus 1.3%), HPIVs (7.6% versus 1.0%), S. pneumoniae (51.9% versus 28.0%), and H. influenzae (54.6% versus 24.5%). Co-infections were significantly associated with respiratory symptoms (65.4% versus 32.9%). All the epidemiological data show a high level of circulation of respiratory pathogens among febrile patients, including those preventable by vaccination such as S. pneumoniae, raising the question of the serotypes currently circulating. Furthermore, the availability of affordable real-time etiological diagnostic tools would enable management to be adapted as effectively as possible.
Collapse
Affiliation(s)
- Dame Ndiaye
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
- EMR MINES, Campus Commun UCAD-IRD of Hann, IRD, Dakar 1386, Senegal; (G.D.); (H.B.); (M.S.)
| | - Georges Diatta
- EMR MINES, Campus Commun UCAD-IRD of Hann, IRD, Dakar 1386, Senegal; (G.D.); (H.B.); (M.S.)
| | - Hubert Bassene
- EMR MINES, Campus Commun UCAD-IRD of Hann, IRD, Dakar 1386, Senegal; (G.D.); (H.B.); (M.S.)
| | - Sébastien Cortaredona
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
- Campus Santé Timone, Aix Marseille University, IRD, MINES, 13005 Marseille, France
| | - Masse Sambou
- EMR MINES, Campus Commun UCAD-IRD of Hann, IRD, Dakar 1386, Senegal; (G.D.); (H.B.); (M.S.)
| | - Anna Julienne Selbe Ndiaye
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
| | | | - Sophie Edouard
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
- Campus Santé Timone, Aix Marseille University, AP-HM, MEPHI, 13005 Marseille, France
- IRD, 13002 Marseille, France
| | - Cheikh Sokhna
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
- EMR MINES, Campus Commun UCAD-IRD of Hann, IRD, Dakar 1386, Senegal; (G.D.); (H.B.); (M.S.)
| | - Florence Fenollar
- Campus Santé Timone, Aix Marseille University, AP-HM, SSA, RITMES, 13005 Marseille, France; (D.N.); (S.C.); (A.J.S.N.); (S.E.); (C.S.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
4
|
Yunker M, Fall A, Norton JM, Abdullah O, Villafuerte DA, Pekosz A, Klein E, Mostafa HH. Genomic Evolution and Surveillance of Respiratory Syncytial Virus during the 2023-2024 Season. Viruses 2024; 16:1122. [PMID: 39066284 PMCID: PMC11281595 DOI: 10.3390/v16071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of morbidity, particularly in infants. This study describes RSV genomic diversity and disease outcomes during the 2023-2024 season in the Johns Hopkins Hospital System (JHHS). Between August and December 2023, 406 patient samples were sequenced, showing that RSV-B GB5.0.5a was the dominant genotype detected. RSV-A genotype GA2.3.5 was detected less frequently. Metadata analysis of patient data revealed that, although RSV-B was more commonly detected, patients with RSV-A infections were more frequently hospitalized. Analysis of both the G- and F-genes revealed multiple amino acid substitutions in both RSV-A and RSV-B, with some positions within the F-protein that could be associated with evasion of antibody responses. Phylogenetic analysis revealed the genetic diversity of circulating GB5.0.5a and GA2.3.5 genotypes. This study serves as an important baseline for genomic surveillance of RSV within the JHHS and will assist in characterizing the impact of the newly approved RSV vaccines on RSV genomic evolution and the emergence of escape mutations.
Collapse
Affiliation(s)
- Madeline Yunker
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Julie M. Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - David A. Villafuerte
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Andrew Pekosz
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (A.P.); (E.K.)
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (A.P.); (E.K.)
- Center for Disease Dynamics, Economics, and Policy, Washington, DC 20005, USA
| | - Heba H. Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| |
Collapse
|
5
|
Moumbeket Yifomnjou MH, Monamele GC, Modiyinji AF, Njankouo-Ripa M, Onana B, Njouom R. Genetic Diversity of Human Respiratory Syncytial Virus during COVID-19 Pandemic in Yaoundé, Cameroon, 2020-2021. Microorganisms 2024; 12:952. [PMID: 38792782 PMCID: PMC11123827 DOI: 10.3390/microorganisms12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide, human respiratory syncytial virus (HRSV) is a major cause of severe infections of the lower respiratory system, affecting individuals of all ages. This study investigated the genetic variability of HRSV during the COVID-19 outbreak in Yaoundé; nasopharyngeal samples positive for HRSV were collected from different age groups between July 2020 and October 2021. A semi-nested RT-PCR was performed on the second hypervariable region of the G gene of detected HRSV, followed by sequencing and phylogenetic assessment. Throughout the study, 40 (37.7%) of the 106 HRSV-positive samples successfully underwent G-gene amplification. HRSV A and HRSV B co-circulated at rates of 47.5% and 52.5%, respectively. HRSV A clustered in the GA2.3.5 genetic lineage (ON1) and HRSV B clustered in the GB5.0.5a genetic lineage (BA9). Differences in circulating genotypes were observed between pre- and post-pandemic years for HRSV A. Predictions revealed potential N-glycosylation sites at positions 237-318 of HRSV A and positions 228-232-294 of HRSV B. This study reports the molecular epidemiology of HRSV in Cameroon during the COVID-19 pandemic. It describes the exclusive co-circulation of two genetic lineages. These findings highlight the importance of implementing comprehensive molecular surveillance to prevent the unexpected emergence of other diseases.
Collapse
Affiliation(s)
- Moïse Henri Moumbeket Yifomnjou
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Gwladys Chavely Monamele
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Abdou Fatawou Modiyinji
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Mohamadou Njankouo-Ripa
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Boyomo Onana
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Richard Njouom
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| |
Collapse
|
6
|
Vazquez-Pérez JA, Martínez-Alvarado E, Venancio-Landeros AA, Santiago-Olivares C, Mejía-Nepomuceno F, Mendoza-Ramírez E, Rivera-Toledo E. An amplicon-based protocol for whole-genome sequencing of human respiratory syncytial virus subgroup A. Biol Methods Protoc 2024; 9:bpae007. [PMID: 38371356 PMCID: PMC10873904 DOI: 10.1093/biomethods/bpae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024] Open
Abstract
It is convenient to study complete genome sequences of human respiratory syncytial virus (hRSV) for ongoing genomic characterization and identification of highly transmissible or pathogenic variants. Whole genome sequencing of hRSV has been challenging from respiratory tract specimens with low viral loads. Herein, we describe an amplicon-based protocol for whole genome sequencing of hRSV subgroup A validated with 24 isolates from nasopharyngeal swabs and infected cell cultures, which showed cycle threshold (Ct) values ranging from 10 to 31, as determined by quantitative reverse-transcription polymerase chain reaction. MinION nanopore generated 3200 to 5400 reads per sample to sequence over 93% of the hRSV-A genome. Coverage of each contig ranged from 130× to 200×. Samples with Ct values of 20.9, 25.2, 27.1, 27.7, 28.2, 28.8, and 29.6 led to the sequencing of over 99.0% of the virus genome, indicating high genome coverage even at high Ct values. This protocol enables the identification of hRSV subgroup A genotypes, as primers were designed to target highly conserved regions. Consequently, it holds potential for application in molecular epidemiology and surveillance of this hRSV subgroup.
Collapse
Affiliation(s)
| | - Eber Martínez-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | | | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | | | | | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
7
|
Jallow MM, Diagne MM, Sagne SN, Tall F, Diouf JBN, Boiro D, Mendy MP, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Loucoubar C, Fall G, Barry MA, Dia N. Respiratory syncytial virus in pediatric patients with severe acute respiratory infections in Senegal: findings from the 2022 sentinel surveillance season. Sci Rep 2023; 13:20404. [PMID: 37990112 PMCID: PMC10663443 DOI: 10.1038/s41598-023-47015-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In 2022, many regions around the world experienced a severe respiratory syncytial virus (RSV) epidemic with an earlier-than-usual start and increased numbers of paediatric patients in emergency departments. Here we carried out this study to describe the epidemiology and genetic characteristics of RSV infection in patients hospitalized with severe acute respiratory infections in 2022. Samples were tested for RSV by multiplex real time reverse transcription polymerase chain reaction. Subsequently, a subset of RSV positive samples was selected for NGS sequencing. RSV was detected in 16.04%, among which RSV-A was confirmed in 7.5% and RSV-B in 76.7%. RSV infection were more identified in infants aged ≤ 11 months (83.3%) and a shift in the circulation pattern was observed, with highest incidences between September-November. Phylogenetic analyses revealed that all RSV-A strains belonged to GA2.3.5 genotype and all RSV-B strains to GB5.0.5a genotype. Three putative N-glycosylation sites at amino acid positions 103, 135, 237 were predicted among RSV-A strains, while four N-linked glycosylation sites at positions 81, 86, 231 and 294 were identified in RSV-B strains. Globally, our findings reveal an exclusive co-circulation of two genetic lineages of RSV within the pediatric population in Senegal, especially in infants aged ≤ 11 months.
Collapse
Affiliation(s)
| | | | - Samba Niang Sagne
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Fatime Tall
- Hôpital Des Enfants Albert Royer de Fann, Dakar, Senegal
| | | | | | | | | | - Davy Kiori
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Sara Sy
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Déborah Goudiaby
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Gamou Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d'Epidémiologie Des Maladies Infectieuses, 36, Avenue Pasteur, B.P. 220, Dakar, Senegal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
8
|
Lee CY, Fang YP, Wang LC, Chou TY, Liu HF. Genetic Diversity and Molecular Epidemiology of Circulating Respiratory Syncytial Virus in Central Taiwan, 2008-2017. Viruses 2021; 14:v14010032. [PMID: 35062237 PMCID: PMC8777914 DOI: 10.3390/v14010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the molecular evolution and phylodynamics of respiratory syncytial virus (RSV) over 10 consecutive seasons (2008–2017) and the genetic variability of the RSV genotypes ON1 and BA in central Taiwan. The ectodomain region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the second hypervariable region of the G protein in RSV ON1 and BA were analyzed. A total of 132 RSV-A and 81 RSV-B isolates were obtained. Phylogenetic analysis revealed that the NA1, ON1, and BA9 genotypes were responsible for the RSV epidemics in central Taiwan in the study period. For RSV-A, the NA1 genotype predominated during the 2008–2011 seasons. The ON1 genotype was first detected in 2011 and replaced NA1 after 2012. For RSV-B, the BA9 and BA10 genotypes cocirculated from 2008 to 2010, but the BA9 genotype has predominated since 2012. Amino acid sequence alignments revealed the continuous evolution of the G gene in the ectodomain region. The predicted N-glycosylation sites were relatively conserved in the ON1 (site 237 and 318) and BA9 (site 296 and 310) genotype strains. Our results contribute to the understanding and prediction of the temporal evolution of RSV at the local level.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
| | - Li-Chung Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Correspondence:
| |
Collapse
|