1
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Zhang H, Sun X, Xiao H, Liu S, Guo N, Li Y, Shi J. miR-PC-3p-241582_34 Contributes to the Infection of Athetis lepigone by Regulating the Expression of HSWP4 in Nosema bombycis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39570147 DOI: 10.1021/acs.jafc.4c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Athetis lepigone is a recurring pest in the maize seedling stage under the wheat-maize no-tillage direct seeding system in China's summer maize region. Our previous research identified a highly pathogenic Nosema bombycis to A. lepigone, which spore wall protein plays an important role in the infection process. However, the regulatory mechanism of this spore wall protein is still unclear. In this study, we explored the regulatory mechanism of miRNAs on spore wall proteins. Transcriptome sequencing results showed that expression of the spore wall protein, HSWP4, significantly increased in the germination group compared to dormancy group. Silencing of HSWP4 reduced the number of microsporidian spores breaking through the midgut wall cells of A. lepigone. Association analysis of small RNA and mRNA revealed that the targeting site of miR-PC-3p-241582_34 on HSWP4 was located in the CDS region, and miR-PC-3p-241582_34 had a significant negative regulatory relationship with HSWP4. The dual luciferase reporter assay demonstrated that miR-PC-3p-241582_34 significantly affected the luciferase activity of the HSWP4-3'UTR expression vector (P < 0.05). Delivery of miRNA mimics decreased the expression of HSWP4 and inhibited the behavior of microsporidian spores breaking through the midgut wall of A. lepigone. On the other hand, delivery of inhibitors produced opposite results, indicating that the miR-HSWP4 pathway plays an important role in microsporidian infection of A. lepigone. This study provides a new theoretical basis for understanding the pathogenic mechanism and gene regulation of microsporidia, as well as for the green control of A. lepigone.
Collapse
Affiliation(s)
- Haijian Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Xuelian Sun
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Hongli Xiao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Shusen Liu
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Ning Guo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| | - Jie Shi
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China
| |
Collapse
|
3
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Ran M, Yang W, Faryad Khan MU, Li T, Pan G. Microsporidia secretory effectors and their roles in pathogenesis. J Eukaryot Microbiol 2024; 71:e13046. [PMID: 39228342 DOI: 10.1111/jeu.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Muhammad Usman Faryad Khan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, Peyretaillade E. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation. Int J Mol Sci 2024; 25:880. [PMID: 38255958 PMCID: PMC10815200 DOI: 10.3390/ijms25020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
Collapse
Affiliation(s)
- Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Valérie Polonais
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Reginald Florian Akossi
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Nicolas Parisot
- UMR 203, BF2I, INRAE, INSA Lyon, Université de Lyon, 69621 Villeurbanne, France
| | - Emmanuelle Lerat
- VAS, CNRS, UMR5558, LBBE, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France;
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Pierre Souvignet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Eric Peyretaillade
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| |
Collapse
|
6
|
Huang Q, Mirjalali H, Zhou Z. Editorial: Genomic and evolutionary analysis of microsporidian parasites. Front Microbiol 2023; 14:1248661. [PMID: 37485513 PMCID: PMC10361567 DOI: 10.3389/fmicb.2023.1248661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|