1
|
Jiang M, Laine L, Kolehmainen P, Kakkola L, Avelin V, Väisänen E, Poranen MM, Österlund P, Julkunen I. Virus-specific Dicer-substrate siRNA swarms inhibit SARS-CoV-2 infection in TMPRSS2-expressing Vero E6 cells. Front Microbiol 2024; 15:1432349. [PMID: 39611095 PMCID: PMC11602746 DOI: 10.3389/fmicb.2024.1432349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
After 4 years of the COVID-19 pandemic, SARS-CoV-2 continues to circulate with epidemic waves caused by evolving new variants. Although the rapid development of vaccines and approved antiviral drugs has reduced virus transmission and mitigated the symptoms of infection, the continuous emergence of new variants and the lack of simple-use (non-hospitalized, easy timing, local delivery, direct acting, and host-targeting) treatment modalities have limited the effectiveness of COVID-19 vaccines and drugs. Therefore, novel therapeutic approaches against SARS-CoV-2 infection are still urgently needed. As a positive-sense single-stranded RNA virus, SARS-CoV-2 is highly susceptible to RNA interference (RNAi). Accordingly, small interfering (si)RNAs targeting different regions of SARS-CoV-2 genome can effectively block the expression and replication of the virus. However, the rapid emergence of new SARS-CoV-2 variants with different genomic mutations has led to the problem of viral escape from the targets of RNAi strategy, which has increased the potential of off-target effects by siRNA and decreased the efficacy of long-term use of siRNA treatment. In our study, we enzymatically generated a set of Dicer-substrate (D)siRNA swarms containing DsiRNAs targeting single or multiple conserved sequences of SARS-CoV-2 genome by using in vitro transcription, replication and Dicer digestion system. Pre-transfection of these DsiRNA swarms into Vero E6-TMPRSS2 cells inhibited the replication of several SARS-CoV-2 variants, including the recent Omicron subvariants BQ.1.1 and XBB.1.5. This in vitro investigation of novel DsiRNA swarms provides solid evidence for the feasibility of this new RNAi strategy in the prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miao Jiang
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Kolehmainen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Kakkola
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| | - Veera Avelin
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
2
|
Gerashchenko GV, Hryshchenko NV, Melnichuk NS, Marchyshak TV, Chernushyn SY, Demchyshina IV, Chernenko LM, Kuzin IV, Tkachuk ZY, Kashuba VI, Tukalo MA. Genetic characteristics of SARS-CoV-2 virus variants observed upon three waves of the COVID-19 pandemic in Ukraine between February 2021-January 2022. Heliyon 2024; 10:e25618. [PMID: 38380034 PMCID: PMC10877268 DOI: 10.1016/j.heliyon.2024.e25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of our study was to identify and characterize the SARS-CoV-2 variants in COVID-19 patients' samples collected from different regions of Ukraine to determine the relationship between SARS-CoV-2 phylogenetics and COVID-19 epidemiology. Patients and methods Samples were collected from COVID-19 patients during 2021 and the beginning of 2022 (401 patients). The SARS-CoV-2 genotyping was performed by parallel whole genome sequencing. Results The obtained SARS-CoV-2 genotypes showed that three waves of the COVID-19 pandemic in Ukraine were represented by three main variants of concern (VOC), named Alpha, Delta and Omicron; each VOC successfully replaced the earlier variant. The VOC Alpha strain was presented by one B.1.1.7 lineage, while VOC Delta showed a spectrum of 25 lineages that had different prevalence in 19 investigated regions of Ukraine. The VOC Omicron in the first half of the pandemic was represented by 13 lines that belonged to two different clades representing B.1 and B.2 Omicron strains. Each of the three epidemic waves (VOC Alpha, Delta, and Omicron) demonstrated their own course of disease, associated with genetic changes in the SARS-CoV-2 genome. The observed epidemiological features are associated with the genetic characteristics of the different VOCs, such as point mutations, deletions and insertions in the viral genome. A phylogenetic and transmission analysis showed the different mutation rates; there were multiple virus sources with a limited distribution between regions. Conclusions The evolution of SARS-CoV-2 virus and high levels of morbidity due to COVID-19 are still registered in the world. Observed multiple virus sourses with the limited distribution between regions indicates the high efficiency of the anti-epidemic policy pursued by the Ministry of Health of Ukraine to prevent the spread of the epidemic, despite the low level of vaccination of the Ukrainian population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zenovii Yu Tkachuk
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Vladimir I. Kashuba
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Mykhailo A. Tukalo
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Sathyaseelan C, Magateshvaren
Saras MA, Prasad Patro LP, Uttamrao PP, Rathinavelan T. CoVe-Tracker: An Interactive SARS-CoV-2 Pan Proteome Evolution Tracker. J Proteome Res 2023; 22:1984-1996. [PMID: 37036263 PMCID: PMC10108739 DOI: 10.1021/acs.jproteome.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 04/11/2023]
Abstract
SARS-CoV-2 has significantly mutated its genome during the past 3 years, leading to the periodic emergence of several variants. Some of the variants possess enhanced fitness advantage, transmissibility, and pathogenicity and can also reduce vaccine efficacy. Thus, it is important to track the viral evolution to prevent and protect the mankind from SARS-CoV-2 infection. To this end, an interactive web-GUI platform, namely, CoVe-tracker (SARS-CoV-2 evolution tracker), is developed to track its pan proteome evolutionary dynamics (https://project.iith.ac.in/cove-tracker/). CoVe-tracker provides an opportunity for the user to fetch the country-wise and protein-wise amino acid mutations (currently, 44139) of SARS-CoV-2 and their month-wise distribution. It also provides position-wise evolution observed in the SARS-CoV-2 proteome. Importantly, CoVe-tracker provides month- and country-wise distributions of 2065 phylogenetic assignment of named global outbreak (PANGO) lineages and their 177564 variants. It further provides periodic updates on SARS-CoV-2 variant(s) evolution. CoVe-tracker provides the results in a user-friendly interactive fashion by projecting the results onto the world map (for country-wise distribution) and protein 3D structure (for protein-wise mutation). The application of CoVe-tracker in tracking the closest cousin(s) of a variant is demonstrated by considering BA.4 and BA.5 PANGO lineages as test cases. Thus, CoVe-tracker would be useful in the quick surveillance of newly emerging mutations/variants/lineages to facilitate the understanding of viral evolution, transmission, and disease epidemiology.
Collapse
Affiliation(s)
- Chakkarai Sathyaseelan
- Department of Biotechnology, Indian Institute
of Technology Hyderabad, Kandi, Telangana State 502285,
India
| | | | - L. Ponoop Prasad Patro
- Department of Biotechnology, Indian Institute
of Technology Hyderabad, Kandi, Telangana State 502285,
India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute
of Technology Hyderabad, Kandi, Telangana State 502285,
India
| | | |
Collapse
|
4
|
Liang F. Quantitative Mutation Analysis of Genes and Proteins of Major SARS-CoV-2 Variants of Concern and Interest. Viruses 2023; 15:v15051193. [PMID: 37243278 DOI: 10.3390/v15051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Of various SARS-CoV-2 variants, some have drawn special concern or interest because of their heightened disease threat. The mutability of individual SARS-CoV-2 genes/proteins presumably varies. The present study quantified gene/protein mutations in 13 major SARS-CoV-2 variants of concern/interest, and analyzed viral protein antigenicity using bioinformatics. The results from 187 carefully perused genome clones showed significantly higher mean percent mutations in the spike, ORF8, nucleocapsid, and NSP6 than in other viral proteins. The ORF8 and spike proteins also tolerated higher maximal percent mutations. The omicron variant presented more percent mutations in the NSP6 and structural proteins, whereas the delta featured more in the ORF7a. Omicron subvariant BA.2 exhibited more mutations in ORF6, and omicron BA.4 had more in NSP1, ORF6, and ORF7b, relative to omicron BA.1. Delta subvariants AY.4 and AY.5 bore more mutations in ORF7b and ORF8 than delta B.1.617.2. Predicted antigen ratios of SARS-CoV-2 proteins significantly vary (range: 38-88%). To overcome SARS-CoV-2 immune evasion, the relatively conserved, potentially immunogenic NSP4, NSP13, NSP14, membrane, and ORF3a viral proteins may serve as more suitable targets for molecular vaccines or therapeutics than the mutation-prone NSP6, spike, ORF8, or nucleocapsid protein. Further investigation into distinct mutations of the variants/subvariants may help understand SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
5
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Al Khalaf R, Bernasconi A, Pinoli P, Ceri S. Analysis of co-occurring and mutually exclusive amino acid changes and detection of convergent and divergent evolution events in SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:4238-4250. [PMID: 35945925 PMCID: PMC9352683 DOI: 10.1016/j.csbj.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we study mutations' convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types are shown by means of a tree-based representation of lineages, visually capturing mutations' behaviors. Our method confirms several well-known cases; moreover, the provided evidence suggests that our workflow can explain aspects of the future mutational evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Ruba Al Khalaf
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Anna Bernasconi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Stefano Ceri
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Vassilaki N, Papadimitriou K, Ioannidis A, Papandreou NC, Milona RS, Iconomidou VA, Chatzipanagiotou S. SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms 2022; 10:microorganisms10071430. [PMID: 35889149 PMCID: PMC9322066 DOI: 10.3390/microorganisms10071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.
Collapse
Affiliation(s)
- Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Sehi Area, 22100 Tripoli, Greece;
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, 72–74 Vasilissis Sofias Avenue, 11528 Athens, Greece
- Correspondence:
| |
Collapse
|
8
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
9
|
Huang F, Chen L, Guo W, Zhou X, Feng K, Huang T, Cai Y. Identifying COVID-19 Severity-Related SARS-CoV-2 Mutation Using a Machine Learning Method. Life (Basel) 2022; 12:806. [PMID: 35743837 PMCID: PMC9225528 DOI: 10.3390/life12060806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 shows great evolutionary capacity through a high frequency of genomic variation during transmission. Evolved SARS-CoV-2 often demonstrates resistance to previous vaccines and can cause poor clinical status in patients. Mutations in the SARS-CoV-2 genome involve mutations in structural and nonstructural proteins, and some of these proteins such as spike proteins have been shown to be directly associated with the clinical status of patients with severe COVID-19 pneumonia. In this study, we collected genome-wide mutation information of virulent strains and the severity of COVID-19 pneumonia in patients varying depending on their clinical status. Important protein mutations and untranslated region mutations were extracted using machine learning methods. First, through Boruta and four ranking algorithms (least absolute shrinkage and selection operator, light gradient boosting machine, max-relevance and min-redundancy, and Monte Carlo feature selection), mutations that were highly correlated with the clinical status of the patients were screened out and sorted in four feature lists. Some mutations such as D614G and V1176F were shown to be associated with viral infectivity. Moreover, previously unreported mutations such as A320V of nsp14 and I164ILV of nsp14 were also identified, which suggests their potential roles. We then applied the incremental feature selection method to each feature list to construct efficient classifiers, which can be directly used to distinguish the clinical status of COVID-19 patients. Meanwhile, four sets of quantitative rules were set up, which can help us to more intuitively understand the role of each mutation in differentiating the clinical status of COVID-19 patients. Identified key mutations linked to virologic properties will help better understand the mechanisms of infection and will aid in the development of antiviral treatments.
Collapse
Affiliation(s)
- Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China;
| | - Xianchao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510060, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
10
|
Magateshvaren Saras MA, Patro LPP, Uttamrao PP, Rathinavelan T. Geographical distribution of SARS-CoV-2 amino acids mutations and the concomitant evolution of seven distinct clades in non-human hosts. Zoonoses Public Health 2022; 69:816-825. [PMID: 35614572 PMCID: PMC9348262 DOI: 10.1111/zph.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Since its first emergence in December 2019, the world has witnessed the eruption of mutations in the SARS‐CoV‐2 genome that have led to increased viral transmissibility and pathogenicity due to sustained local viral transmission. Zooanthroponotic and zoonotic transmissions have further raised concerns as they could result in the emergence of viral variants with a novel antigenicity and transmissibility that could jeopardize the vaccine efficacy. To understand the viral evolution during such transmissions, 1016 whole‐genome sequences (deposited in GISAID as of March 7, 2022) (from 18 countries) corresponding to mink, cat, deer, dog, hyena, tiger, lion, gorilla, Syrian hamster, leopard cat, fishing cat, bear cat, coati, ferret, snow leopard and green monkey have been analysed here. Intriguingly, phyloproteome analysis indicate that Nsp2:R218C, Nsp2:D268‐(deletion), Spike:D614G, Nsp12:P323L, Nsp2:A192V, ORF3a protein:Q57H, N protein:R203K and N protein:G204R/L, Spike:A222V, ORF10 protein:V30L and N protein:A220V are moderate or high recurring and clade decisive mutations, leading to 6 primary clades during the early stage of pandemic. Most interestingly, the human evolved delta variant having a combination of 26 (clade decisive) mutations defines the seventh clade and transmits to non‐human hosts across the globe without exhibiting any country‐specific mutation(s). Nonetheless, Spike:D614G and Nsp12:P323L together with (i)N protein:R203K,N protein:G204R/L,Spike:V70‐, Spike:H69‐, Nsp12:T739I, and Nsp1:M85‐, (ii)Nsp2:A192V, Nsp3:D178Y, (iii)Nsp2:T85I, N protein:P67S and ORF3a protein:Q57H and (iv)Spike:A222V, ORF10 protein:V30L, N protein:A220V and Spike:F486I are specific to Denmark, Netherlands, USA and Latvia respectively and, (v)Nsp2:D268‐ and Nsp13:R292C that are devoid of Spike:D614G and Nsp12:P323L is specific to Netherlands. SARS‐CoV‐2 variants consisting of these mutations are also seen in the human SARS‐CoV‐2 sequences from the same country. Independent country‐specific SARS‐CoV‐2 variant evolution further indicates distinct epidemiological dynamics during zooanthroponotic and zoonotic transmissions. Thus, the results presented here indicate the need for the surveillance of viral evolution in non‐human hosts also during the future pandemic.
Collapse
|
11
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
12
|
Uttamrao PP, Sathyaseelan C, Patro LPP, Rathinavelan T. Revelation of Potent Epitopes Present in Unannotated ORF Antigens of SARS-CoV-2 for Epitope-Based Polyvalent Vaccine Design Using Immunoinformatics Approach. Front Immunol 2021; 12:692937. [PMID: 34497604 PMCID: PMC8419283 DOI: 10.3389/fimmu.2021.692937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kills thousands of people worldwide every day, thus necessitating rapid development of countermeasures. Immunoinformatics analyses carried out here in search of immunodominant regions in recently identified SARS-CoV-2 unannotated open reading frames (uORFs) have identified eight linear B-cell, one conformational B-cell, 10 CD4+ T-cell, and 12 CD8+ T-cell promising epitopes. Among them, ORF9b B-cell and T-cell epitopes are the most promising followed by M.ext and ORF3c epitopes. ORF9b40-48 (CD8+ T-cell epitope) is found to be highly immunogenic and antigenic with the highest allele coverage. Furthermore, it has overlap with four potent CD4+ T-cell epitopes. Structure-based B-cell epitope prediction has identified ORF9b61-68 to be immunodominant, which partially overlaps with one of the linear B-cell epitopes (ORF9b65-69). ORF3c CD4+ T-cell epitopes (ORF3c2-16, ORF3c3-17, and ORF3c4-18) and linear B-cell epitope (ORF3c14-22) have also been identified as the candidate epitopes. Similarly, M.ext and 7a.iORF1 (overlap with M and ORF7a) proteins have promising immunogenic regions. By considering the level of antigen expression, four ORF9b and five M.ext epitopes are finally shortlisted as potent epitopes. Mutation analysis has further revealed that the shortlisted potent uORF epitopes are resistant to recurrent mutations. Additionally, four N-protein (expressed by canonical ORF) epitopes are found to be potent. Thus, SARS-CoV-2 uORF B-cell and T-cell epitopes identified here along with canonical ORF epitopes may aid in the design of a promising epitope-based polyvalent vaccine (when connected through appropriate linkers) against SARS-CoV-2. Such a vaccine can act as a bulwark against SARS-CoV-2, especially in the scenario of emergence of variants with recurring mutations in the spike protein.
Collapse
|