1
|
Pondé RADA, Amorim GDSP. Exchanges in the 'a' determinant of the hepatitis B virus surface antigen revisited. Virology 2024; 599:110184. [PMID: 39127000 DOI: 10.1016/j.virol.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
The hepatitis B virus surface antigen's (HBsAg) 'a' determinant comprises a sequence of amino acid residues located in the major hydrophilic region of the S protein, whose exchanges are closely associated with compromising the antigenicity and immunogenicity of that antigen. The HBsAg is generally present in the bloodstream of individuals with acute or chronic hepatitis B virus (HBV) infection. It is classically known as the HBV infection marker, and is therefore the first marker to be investigated in the laboratory in the clinical hypothesis of infection by this agent. One of the factors that compromises the HBsAg detection in the bloodstream by the assays adopted in serological screening in both clinical contexts is the loss of S protein antigenicity. This can occur due to mutations that emerge in the HBV genome regions that encode the S protein, especially for its immunodominant region - the 'a' determinant. These mutations can induce exchanges of amino acid residues in the S protein's primary structure, altering its tertiary structure and the antigenic conformation, which may not be recognized by anti-HBs antibodies, compromising the infection diagnosis. In addition, these exchanges can render ineffective the anti-HBs antibodies action acquired by vaccination, compromise the effectiveness of the chronically HBV infected patient's treatment, and also the HBsAg immunogenicity, by promoting its retention within the cell. In this review, the residues exchange that alter the S protein's structure is revisited, as well as the mechanisms that lead to the HBsAg antigenicity loss, and the clinical, laboratory and epidemiological consequences of this phenomenon.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância Em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | | |
Collapse
|
2
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
3
|
Huang ZZ, Tan J, Huang P, Li BS, Guo Q, Liang LJ. The evolutionary features and roles of single nucleotide variants and charged amino acid mutations in influenza outbreaks during NPI period. Sci Rep 2024; 14:20418. [PMID: 39223292 PMCID: PMC11369173 DOI: 10.1038/s41598-024-71349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The epidemic and outbreaks of influenza B Victoria lineage (Bv) during 2019-2022 led to an analysis of genetic, epitopes, charged amino acids and Bv outbreaks. Based on the National Influenza Surveillance Network (NISN), the Bv 72 strains isolated during 2019-2022 were selected by spatio-temporal sampling, then were sequenced. Using the Compare Means, Correlate and Cluster, the outbreak data were analyzed, including the single nucleotide variant (SNV), amino acid (AA), epitope, evolutionary rate (ER), Shannon entropy value (SV), charged amino acid and outbreak. With the emergence of COVID-19, the non-pharmaceutical interventions (NPIs) made Less distant transmission and only Bv outbreak. The 2021-2022 strains in the HA genes were located in the same subset, but were distinct from the 2019-2020 strains (P < 0.001). The codon G → A transition in nucleotide was in the highest ratio but the transversion of C → A and T → A made the most significant contribution to the outbreaks, while the increase in amino acid mutations characterized by polar, acidic and basic signatures played a key role in the Bv epidemic in 2021-2022. Both ER and SV were positively correlated in HA genes (R = 0.690) and NA genes (R = 0.711), respectively, however, the number of mutations in the HA genes was 1.59 times higher than that of the NA gene (2.15/1.36) from the beginning of 2020 to 2022. The positively selective sites 174, 199, 214 and 563 in HA genes and the sites 73 and 384 in NA genes were evolutionarily selected in the 2021-2022 influenza outbreaks. Overall, the prevalent factors related to 2021-2022 influenza outbreaks included epidemic timing, Tv, Ts, Tv/Ts, P137 (B → P), P148 (B → P), P199 (P → A), P212 (P → A), P214 (H → P) and P563 (B → P). The preference of amino acid mutations for charge/pH could influence the epidemic/outbreak trends of infectious diseases. Here was a good model of the evolution of infectious disease pathogens. This study, on account of further exploration of virology, genetics, bioinformatics and outbreak information, might facilitate further understanding of their deep interaction mechanisms in the spread of infectious diseases.
Collapse
Affiliation(s)
- Zhong-Zhou Huang
- Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jing Tan
- Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Ping Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China.
- Guangdong Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Bai-Sheng Li
- Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
- Guangdong Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Guo
- Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Li-Jun Liang
- Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
- Guangdong Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Center for Disease Control and Prevention, Guangzhou, 511430, China
| |
Collapse
|
4
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
5
|
Jiang ZH, Chen QY, Jia HH, Wang XY, Zhang LJ, Huang XQ, Harrison TJ, Jackson JB, Wu L, Fang ZL. Low host immune pressure may be associated with the development of hepatocellular carcinoma: a longitudinal analysis of complete genomes of the HBV 1762T, 1764A mutant. Front Oncol 2023; 13:1214423. [PMID: 37681020 PMCID: PMC10481955 DOI: 10.3389/fonc.2023.1214423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Background It has been reported that hepatitis B virus (HBV) double mutations (A1762T, G1764A) are an aetiological factor of hepatocellular carcinoma (HCC). However, it is unclear who is prone to develop HCC, among those infected with the mutant. Exploring HBV quasispecies, which are strongly influenced by host immune pressure, may provide more information about the association of viral factors and HCC. Materials and methods Nine HCC cases and 10 controls were selected from the Long An cohort. Serum samples were collected in 2004 and 2019 from subjects with HBV double mutations and the complete genome of HBV was amplified and sequenced using next-generation sequencing (NGS). Results The Shannon entropy values increased from 2004 to 2019 in most cases and controls. There was no significant difference in mean intrahost quasispecies genetic distances between cases and controls. The change in the values of mean intrahost quasispecies genetic distances of the controls between 2004 and 2019 was significantly higher than that of the cases (P<0.05). The viral loads did not differ significantly between cases and controls in 2004(p=0.086) but differed at diagnosed in 2019 (p=0.009). Three mutations occurring with increasing frequency from 2004 to 2019 were identified in the HCC cases, including nt446 C→G, nt514 A→C and nt2857T→C. Their frequency differed significantly between the cases and controls (P<0.05). Conclusions The change in the values of mean intrahost quasispecies genetic distances in HCC was smaller, suggesting that HBV in HCC cases may be subject to low host immune pressure. Increasing viral loads during long-term infection are associated with the development of HCC. The novel mutations may increase the risk for HCC.
Collapse
Affiliation(s)
- Zhi-Hua Jiang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
| | - Qin-Yan Chen
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
| | - Hui-Hua Jia
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Yan Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
| | - Lu-Juan Zhang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
| | - Xiao-Qian Huang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Tim J. Harrison
- Division of Medicine, University College London Medical School, London, United Kingdom
| | - J. Brooks Jackson
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Zhong-Liao Fang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi, China
| |
Collapse
|
6
|
A novel subgenotype I3 of hepatitis B virus in Guangxi, China: a 15-year follow-up study. Virus Genes 2023; 59:359-369. [PMID: 36841897 DOI: 10.1007/s11262-023-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023]
Abstract
Genotype I of hepatitis B virus (HBV) was proposed recently following sequencing of complete HBV genomes from Vietnam and Laos. However, its long-term molecular evolution is unknown. The objectives of this study were to study the molecular evolution of this genotype from an asymptomatic HBsAg carrier from the Long An cohort over a 15-year period was studied using both NGS and clone-based sequencing. The number of complete genome sequences obtained in 2004, 2007, 2013, and 2019 are 17, 20, 19, and 10, respectively. All strains belong to subgenotype I1, except for six (five from 2007 and one from 2019) and 8 further strains from 2007 which form a cluster branching out from other subgenotype I sequences, supported by a 100% bootstrap value. Based on complete genome sequences, all of the estimated intragroup nucleotide divergence values between these strains and HBV subgenotypes I1-I2 exceed 4%. These strains are recombinants between genotype I1 and subgenotype C but the breakpoints vary. The median intrahost viral evolutionary rate in this carrier was 3.88E-4 substitutions per site per year. The Shannon entropy (Sn) ranged from 0.55 to 0.88 and the genetic diversity, D, ranged from 0.0022 to 0.0041. In conclusion, our data provide evidence of novel subgenotypes. Considering that the 8 strains disappeared after 2007, while one of the 6 strains appears again in 2019, we propose these 6 strains as a new subgenotype, provisionally designated HBV subgenotype I3 and the 8 strains as aberrant genotype.
Collapse
|