1
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Zheng X, Li J, Ma Q, Gong J, Pan J. Integrative analyses of mendelian randomization and bioinformatics reveal casual relationship and genetic links between COVID-19 and knee osteoarthritis. BMC Med Genomics 2025; 18:2. [PMID: 39748395 PMCID: PMC11697936 DOI: 10.1186/s12920-024-02074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Clinical and epidemiological analyses have found an association between coronavirus disease 2019 (COVID-19) and knee osteoarthritis (KOA). Infection with COVID-19 may increase the risk of developing KOA. OBJECTIVES This study aimed to investigate the potential causal relationship between COVID-19 and KOA using Mendelian randomization (MR) and to explore the underlying mechanisms through a systematic bioinformatics approach. METHODS Our investigation focused on exploring the potential causal relationship between COVID-19, acute upper respiratory tract infection (URTI) and KOA utilizing a bidirectional MR approach. Additionally, we conducted differential gene expression analysis using public datasets related to these three conditions. Subsequent analyses, including transcriptional regulation analysis, immune cell infiltration analysis, single-cell analysis, and druggability evaluation, were performed to explore potential mechanisms and prioritize therapeutic targets. RESULTS The results indicate that COVID-19 has a one-way impact on KOA, while URTI does not play a causal role in this association. Ribosomal dysfunction may serve as an intermediate factor connecting COVID-19 with KOA. Specifically, COVID-19 has the potential to influence the metabolic processes of the extracellular matrix, potentially impacting the joint homeostasis. A specific group of genes (COL10A1, BGN, COL3A1, COMP, ACAN, THBS2, COL5A1, COL16A1, COL5A2) has been identified as a shared transcriptomic signature in response to KOA with COVID-19. Imatinib, Adiponectin, Myricetin, Tranexamic acid, and Chenodeoxycholic acid are potential drugs for the treatment of KOA patients with COVID-19. CONCLUSIONS This study uniquely combines Mendelian randomization and bioinformatics tools to explore the possibility of a causal relationship and genetic association between COVID-19 and KOA. These findings are expected to provide novel perspectives on the underlying biological mechanisms that link COVID-19 and KOA.
Collapse
Affiliation(s)
- Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jinhao Li
- Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinfeng Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianping Gong
- Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
3
|
Han Y, Quan Z, Tian M, Wang R, Guo D, Zhang D, Liu L. BACE1 inhibition via miR-6838-5p overexpression inhibits insulin resistance and the immune response in HFD-induced obesity in mice model. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 39604020 DOI: 10.1080/08923973.2024.2430668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT Obesity is a chronic inflammatory disorder, which promotes the progression of metabolic disorders. MicroRNA (miR)-6838-5p is dysregulated and participates in the progression of several disorder models. OBJECTIVE To explore the role and mechanism of miR-6838-5p in insulin resistance. METHODS Mice were fed with high-fat diet (HFD) to construct an obesity animal model. The role of miR-6838-5p was evaluated by insulin tolerance test (ITT), glucose tolerance test (GTT), homeostasis model assessment of insulin resistance (HOMA-IR) analysis, enzyme-linked immunosorbent assay (ELISA) and western blot assays. The potential target of miR-6838-5p was screened through the starBase online website and confirmed by the luciferase assay. RESULTS HFD supply induced a prominent increase in the body weight, white adipose tissue (WAT) weight, the area under the curve (AUC) of GTT and ITT, HOMA-IR, the serum level of insulin and the serum concentrations and relative protein levels of interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) accompanied with reduced levels of IL-10 in mice. The level of miR-6838-5p was reduced in HFD-fed mice. Upregulation of miR-6838-5p partly reversed the above-mentioned indicators. Moreover, miR-6838-5p directly targeted to β-site amyloid precursor protein cleaving enzyme1 (BACE1) and negatively regulated the BACE1 expression. Downregulation of BACE1 improved insulin sensitivity and inflammatory mediators release involving in AKT/GSK3β signaling pathway in HFD-fed mice. Besides, overexpression of BACE1 counteracted the depressant role of miR-6838-5p overexpression in insulin resistance and inflammatory factors release in HFD-fed mice. CONCLUSION MiR-6838-5p/BACE1 axis regulated insulin resistance and inflammatory factors release in HFD-fed mice.
Collapse
Affiliation(s)
- Yubo Han
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenhua Quan
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miao Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruinan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghao Guo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dandan Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Sarapata K, Kania A. Revealing miRNAs patterns by employing matrix representations and energy analysis. J Mol Graph Model 2024; 132:108835. [PMID: 39106629 DOI: 10.1016/j.jmgm.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression. Despite their relatively short length (about 21 nucleotides), they can regulate thousands of transcripts within a cell. Due to their low complementarity to targets, studying their activity and binding region preferences (3'UTR, 5'UTR, or CDS) is challenging. In this paper, we analyzed a set of human miRNAs to uncover their general patterns. We began with a sequence logo to verify conservation at specific positions. To discover long-range correlations, we employed chaos game representation (CGR) and genomatrix, methods that enable both graphical and analytical analysis of sequence sets and are well-established in bioinformatics. Our results showed that miRNAs exhibit strongly non-random and characteristic patterns. To incorporate physicochemical properties into the analysis, we applied the electron-ion interaction potential (EIIP) parameter. An important part of our study was to validate the division of miRNAs into two parts-seed and puzzle. The seed region is responsible for target binding, while the puzzle region likely interacts with the RISC complex. We estimated duplex binding energy within the 3'UTR, 5'UTR, and CDS regions using the miRanda tool. Based on the median energy distribution, we divided the miRNAs into two subsets, reflecting different patterns in chaos game representation. Interestingly, one subset displayed significant similarity to conserved and highly confidential miRNAs. Our results confirm the low complementarity of miRNA/mRNA interactions and support the functional division of miRNA structure. Additionally, we present findings related to the localization of transcript target sites, which form the basis for further analyses.
Collapse
Affiliation(s)
- Krzysztof Sarapata
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Adrian Kania
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland.
| |
Collapse
|
5
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
7
|
Hong Y, Wu J, Sun Y, Zhang S, Lu Y, Ji Y. ceRNA network construction and identification of hub genes as novel therapeutic targets for age-related cataracts using bioinformatics. PeerJ 2023; 11:e15054. [PMID: 36987450 PMCID: PMC10040182 DOI: 10.7717/peerj.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Background The aim of this study is to investigate the genetic and epigenetic mechanisms involved in the pathogenesis of age-related cataract (ARC). Methods We obtained the transcriptome datafile of th ree ARC samples and three healthy, age-matched samples and used differential expression analyses to identify the differentially expressed genes (DEGs). The differential lncRNA-associated competing endogenous (ceRNA) network, and the protein-protein network (PPI) were constructed using Cytoscape and STRING. Cluster analyses were performed to identify the underlying molecular mechanisms of the hub genes affecting ARC progression. To verify the immune status of the ARC patients, immune-associated analyses were also conducted. Results The PPI network identified the FOXO1 gene as the hub gene with the highest score, as calculated by the Maximal Clique Centrality (MCC) algorithm. The ceRNA network identified lncRNAs H19, XIST, TTTY14, and MEG3 and hub genes FOXO1, NOTCH3, CDK6, SPRY2, and CA2 as playing key roles in regulating the pathogenesis of ARC. Additionally, the identified hub genes showed no significant correlation with an immune response but were highly correlated with cell metabolism, including cysteine, methionine, and galactose. Discussion The findings of this study may provide clues toward ARC pathogenic mechanisms and may be of significance for future therapeutic research.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev 2023; 57:100995. [PMID: 35934552 PMCID: PMC9338830 DOI: 10.1016/j.blre.2022.100995] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.
Collapse
Affiliation(s)
- Endry Hartono Taslim Lim
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rombout Benjamin Ezra van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Vieve Victoria de Boer
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lonneke Alette van Vught
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Matthijs Christian Brouwer
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander Petrus Johannes Vlaar
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands.
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Li X, Wang Y, Zhou Q, Pan J, Xu J. Potential Predictive Value of miR-125b-5p, miR-155-5p and Their Target Genes in the Course of COVID-19. Infect Drug Resist 2022; 15:4079-4091. [PMID: 35937783 PMCID: PMC9346419 DOI: 10.2147/idr.s372420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study aimed to provide new biomarkers for predicting the disease course of COVID-19 by analyzing the dynamic changes of microRNA (miRNA) and its target gene expression in the serum of COVID-19 patients at different stages. METHODS Serum samples were collected from all COVID-19 patients at three time points: the acute stage, the turn-negative stage, and the recovery stage. The expression level of miRNA and the target mRNA was measured by Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). The classification tree model was established to predict the disease course, and the prediction efficiency of independent variables in the model was analyzed using the receiver operating characteristic (ROC) curve. RESULTS The expression of miR-125b-5p and miR-155-5p was significantly up-regulated in the acute stage and gradually decreased in the turn-negative and recovery stages. The expression of the target genes CDH5, STAT3, and TRIM32 gradually down-regulated in the acute, turn-negative, and recovery stages. MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 constituted a classification tree model with 100% accuracy of prediction and AUC >0.7 for identification and prediction in all stages. CONCLUSION MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 could be useful biomarkers to predict the time nodes of the acute, turn-negative, and recovery stages of COVID-19.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Junqi Pan
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|