1
|
Faleye TOC, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling. Viruses 2024; 16:1188. [PMID: 39205161 PMCID: PMC11359023 DOI: 10.3390/v16081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Collapse
Affiliation(s)
- Temitope O. C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Faleye TOC, Driver EM, Wright JM, Halden RU, Varsani A, Scotch M. Direct detection of canine picornavirus complete coding sequence in wastewater using long-range reverse-transcriptase polymerase chain reaction and long-read sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105550. [PMID: 38199505 PMCID: PMC10923025 DOI: 10.1016/j.meegid.2024.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
We describe four complete coding sequence (cCDS) of canine picornavirus from wastewater in Arizona, USA detected by coupling cCDS single-contig (∼7.5 kb) reverse-transcriptase polymerase chain reaction (RT-PCR) and low-cost long-read high-throughput sequencing. For viruses of medical/veterinary importance, this workflow expands possibilities of wastewater based genomic epidemiology for exploring virus evolutionary dynamics especially in low-resource settings.
Collapse
Affiliation(s)
- Temitope O C Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jillian M Wright
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
3
|
Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159166. [PMID: 36202364 PMCID: PMC9534267 DOI: 10.1016/j.scitotenv.2022.159166] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 04/13/2023]
Abstract
Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, OR, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Advanced Molecular Laboratory, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Biology, Morgan State University, Baltimore, MD, USA; Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria; Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Srijan Aggarwal
- Department of Civil, Geological and Environmental Engineering, College of Engineering and Mines, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775, USA
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| |
Collapse
|
4
|
Faleye TO, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Impact of sample clarification by size exclusion on virus detection and diversity in wastewater-based epidemiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.25.22280344. [PMID: 36203558 PMCID: PMC9536034 DOI: 10.1101/2022.09.25.22280344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of wastewater-based epidemiology (WBE) for early detection of virus circulation and response during the SARS-CoV-2 pandemic increased interest in and use of virus concentration protocols that are quick, scalable, and efficient. One such protocol involves sample clarification by size fractionation using either low-speed centrifugation to produce a clarified supernatant or membrane filtration to produce an initial filtrate depleted of solids, eukaryotes and bacterial present in wastewater (WW), followed by concentration of virus particles by ultrafiltration of the above. While this approach has been successful in identifying viruses from WW, it assumes that majority of the viruses of interest should be present in the fraction obtained by ultrafiltration of the initial filtrate, with negligible loss of viral particles and viral diversity. We used WW samples collected in a population of ~700,000 in southwest USA between October 2019 and March 2021, targeting three non-enveloped viruses (enteroviruses [EV], canine picornaviruses [CanPV], and human adenovirus 41 [Ad41]), to evaluate whether size fractionation of WW prior to ultrafiltration leads to appreciable differences in the virus presence and diversity determined. We showed that virus presence or absence in WW samples in both portions (filter trapped solids [FTS] and filtrate) are not consistent with each other. We also found that in cases where virus was detected in both fractions, virus diversity (or types) captured either in FTS or filtrate were not consistent with each other. Hence, preferring one fraction of WW over the other can undermine the capacity of WBE to function as an early warning system and negatively impact the accurate representation of virus presence and diversity in a population.
Collapse
Affiliation(s)
- Temitope O.C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
- OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|