1
|
Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, Tanya SM, Nguyen AXL, Burnier MN, Demirci H. Oncolytic Viruses and Immunotherapy for the Treatment of Uveal Melanoma and Retinoblastoma: The Current Landscape and Novel Advances. Biomedicines 2025; 13:108. [PMID: 39857692 PMCID: PMC11762644 DOI: 10.3390/biomedicines13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options. Extraocular extension, recurrence, and metastasis constitute the major challenges of conventional treatments. To overcome these obstacles, immunotherapy, which encompasses different treatment options such as oncolytic viruses, antibody-mediated immune modulations, and targeted immunotherapy, has shown great potential as a novel therapeutic tool for cancer therapy. These anti-cancer treatment options provide numerous advantages such as selective cancer cell death and the promotion of an anti-tumor immune response, and they prove useful in preventing vision impairment due to macular and/or optic disc involvement. Numerous factors such as the vector choice, route of administration, dosing, and patient characteristics must be considered when engineering an oncolytic virus or other forms of immunotherapy vectors. This manuscript provides an in-depth review of the molecular design of oncolytic viruses (e.g., virus capsid proteins and encapsulation technologies, vectors for delivery, cell targeting) and immunotherapy. The most recent advances in preclinical- and clinical-phase studies are further summarized. The recent developments in virus-like drug conjugates (i.e., AU011), oncolytic viruses for metastatic UM, and targeted immunotherapies have shown great results in clinical trials for the future clinical application of these novel technologies in the treatment algorithm of certain intraocular tumors.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Massimo Mazza
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Armaan Jaffer
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada
- Research Excellence Cluster in Vision, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Sarinee Juntipwong
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Stuti Misty Tanya
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hakan Demirci
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
2
|
Zhang H, Zhang W, Pan Y, Li H, He T, Dong Q, Song W, Zhang W, Zhang L, Kareem K, Jiang S, Sheng J. Evolutionary Dynamics and Pathogenicity Analysis of Feline Panleukopenia Virus in Xinjiang, China. Microorganisms 2024; 12:2205. [PMID: 39597594 PMCID: PMC11596581 DOI: 10.3390/microorganisms12112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Feline panleukopenia virus (FPV), a globally pervasive and highly pathogenic pathogen, has garnered significant attention recently due to the cross-species transmission of its variants. Despite the vast body of research conducted on FPV, studies exploring its evolutionary history, dynamics, and the factors driving its evolution remain scarce. The pathogenicity of strains with the prevalent mutations (A91S and I101T) in the VP2 protein has also not been fully elucidated. This study conducted a comparative analysis of FPV VP2 sequences sourced from Xinjiang province in China, other provinces in China, and other countries. It was confirmed that the evolutionary rate of FPV approached that of RNA viruses, at approximately 1.13 × 10-4 substitutions/site/year. The study reconstructed molecular models of the VP2 protein with the A91S and I101T mutations and used viral strains carrying these mutations to perform the animal regression experiment. It was confirmed that isolates with the A91S and I101T mutations could cause typical leukopenia and acute enteritis symptoms, suggesting that the mutant strains still possess certain pathogenicity. This is the first study to report on the evolutionary dynamics of FPV in Xinjiang, China, and it emphasized the importance of continuously monitoring FPV evolutionary dynamics.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Wenxiang Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Yu Pan
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Honghuan Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Tao He
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Qianqian Dong
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Wenyan Song
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Wenya Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Liyan Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Kashaf Kareem
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Department of Zoology, Government College University, Faisalabad Layyah Campus, Layyah 31200, Punjab, Pakistan
| | - Song Jiang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Jinliang Sheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| |
Collapse
|
3
|
Barbosa ADO, Gava D, Tochetto C, Ribeiro LC, Bastos APA, Morés MAZ, Schaefer R, de Lima M. Immunogenicity of an Inactivated Senecavirus A Vaccine with a Contemporary Brazilian Strain in Mice. Vaccines (Basel) 2024; 12:845. [PMID: 39203971 PMCID: PMC11358955 DOI: 10.3390/vaccines12080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Senecavirus A (SVA) is a picornavirus that is endemic in swine, causing a vesicular disease clinically indistinguishable from other vesicular diseases, like foot-and-mouth disease. The widespread viral circulation, constant evolution, and economic losses caused to the swine industry emphasize the need for measures to control the agent. In this study, we evaluated the immunogenicity of a whole-virus-inactivated vaccine using a representative contemporary Brazilian SVA strain in Balb/ByJ mice. The animals were vaccinated with two doses by an intramuscular route. The humoral response induced by the vaccination was evaluated by an in-house ELISA assay for IgG detection. The cellular response was assessed by flow cytometry after in vitro SVA stimulation in splenocyte cultures from vaccinated and non-vaccinated groups. Protection against SVA was assessed in the experimental groups following an oral challenge with the homologous virus. The vaccination induced high levels of IgG antibodies and the proliferation of CD45R/B220+sIgM+, CD3e+CD69+, and CD3e+CD4+CD44+CD62L- cells. These results indicate the immunogenicity and safety of the vaccine formulation in a murine model and the induction of humoral and cellular response against SVA.
Collapse
Affiliation(s)
- Amanda de Oliveira Barbosa
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| | - Danielle Gava
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Caroline Tochetto
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Leonardo Clasen Ribeiro
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Marcos Antônio Zanella Morés
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR 153, Km 110, Distrito de Tamanduá, Concordia 89715-899, SC, Brazil; (D.G.); (C.T.); (A.P.A.B.); (M.A.Z.M.); (R.S.)
| | - Marcelo de Lima
- Laboratório de Virologia e Imunologia, Universidade Federal de Pelotas, Capão do Leão 96160-000, RS, Brazil; (A.d.O.B.); (L.C.R.)
| |
Collapse
|
4
|
Li Y, Chu H, Jiang Y, Li Z, Wang J, Liu F. Comparative transcriptomics analysis on Senecavirus A-infected and non-infected cells. Front Vet Sci 2024; 11:1431879. [PMID: 38983770 PMCID: PMC11231404 DOI: 10.3389/fvets.2024.1431879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Senecavirus A (SVA) is an emerging virus that causes the vesicular disease in pigs, clinically indistinguishable from other high consequence vesicular diseases. This virus belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded RNA, approximately 7,300 nt in length, with a 3' poly(A) tail but without 5'-end capped structure. SVA can efficiently propagate in different cells, including some non-pig-derived cell lines. A wild-type SVA was previously rescued from its cDNA clone using reverse genetics in our laboratory. In the present study, the BSR-T7/5 cell line was inoculated with the passage-5 SVA. At 12 h post-inoculation, SVA-infected and non-infected cells were independently collected for the analysis on comparative transcriptomics. The results totally showed 628 differentially expressed genes, including 565 upregulated and 63 downregulated ones, suggesting that SVA infection significantly stimulated the transcription initiation in cells. GO and KEGG enrichment analyses demonstrated that SVA exerted multiple effects on immunity-related pathways in cells. Furthermore, the RNA sequencing data were subjected to other in-depth analyses, such as the single-nucleotide polymorphism, transcription factors, and protein-protein interactions. The present study, along with our previous proteomics and metabolomics researches, provides a multi-omics insight into the interaction between SVA and its hosts.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Huanhuan Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Zhongren-OLand Bioengineering Co., Ltd., Qingdao, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Li Y, Liu T, Zhang Y, Duan X, Liu F. RNA recombination: non-negligible factor for preventing emergence or reemergence of Senecavirus A. Front Vet Sci 2024; 11:1357179. [PMID: 38328259 PMCID: PMC10847583 DOI: 10.3389/fvets.2024.1357179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Tianyu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|