1
|
Talevi A, Bellera C. An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024? Expert Opin Drug Discov 2024; 19:975-990. [PMID: 38963148 DOI: 10.1080/17460441.2024.2373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Llanos MA, Enrique N, Esteban-López V, Scioli-Montoto S, Sánchez-Benito D, Ruiz ME, Milesi V, López DE, Talevi A, Martín P, Gavernet L. A Combined Ligand- and Structure-Based Virtual Screening To Identify Novel NaV1.2 Blockers: In Vitro Patch Clamp Validation and In Vivo Anticonvulsant Activity. J Chem Inf Model 2023; 63:7083-7096. [PMID: 37917937 DOI: 10.1021/acs.jcim.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Vega Esteban-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Sebastian Scioli-Montoto
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - David Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - María E Ruiz
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| |
Collapse
|
3
|
Alan T. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open 2022; 7 Suppl 1:S133-S141. [PMID: 35090197 PMCID: PMC9340309 DOI: 10.1002/epi4.12581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the ever-increasing number of available options for the treatment of epilepsies and the remarkable advances on the understanding of their pathophysiology, the proportion of refractory patients has remained approximately unmodified during the last 100 years. How efficient are we translating positive outcomes from basic research to clinical trials and/or the clinical scenario? It is possible that fresh thinking and exploration of new paradigms is required to arrive at truly novel therapeutic solutions, as seemingly proven by recently approved first-in-class antiseizure medications and drug candidates undergoing late clinical trials. Here, the author discusses some approximations in line with the network pharmacology philosophy, which may result in highly innovative (and, hopefully, safer and/or more efficacious) medications for the control of seizures, as embodied with some recent examples in the field, namely tailored multi-target agents and low-affinity ligands.
Collapse
Affiliation(s)
- Talevi Alan
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of exact Sciences, University of La Plata (UNLP), 47 & 15, La Plata (B1900AJK), Buenos Aires, Argentina
| |
Collapse
|
4
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
5
|
Poroikov VV. Computer-Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2020. [DOI: 10.1134/s1990750820030117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Poroikov VV. [Computer-aided drug design: from discovery of novel pharmaceutical agents to systems pharmacology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:30-41. [PMID: 32116224 DOI: 10.18097/pbmc20206601030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New drug discovery is based on the analysis of public information about the mechanisms of the disease, molecular targets, and ligands, which interaction with the target could lead to the normalization of the pathological process. The available data on diseases, drugs, pharmacological effects, molecular targets, and drug-like substances, taking into account the combinatorics of the associative relations between them, correspond to the Big Data. To analyze such data, the application of computer-aided drug design methods is necessary. An overview of the studies in this area performed by the Laboratory for Structure-Function Based Drug Design of IBMC is presented. We have developed the approaches to identifying promising pharmacological targets, predicting several thousand types of biological activity based on the structural formula of the compound, analyzing protein-ligand interactions based on assessing local similarity of amino acid sequences, identifying likely molecular mechanisms of side effects of drugs, calculating the integral toxicity of drugs taking into account their metabolism, have been developed in the human body, predicting sustainable and sensitive options strains and evaluating the effectiveness of combinations of antiretroviral drugs in patients, taking into account the molecular genetic characteristics of the clinical isolates of HIV-1. Our computer programs are implemented as the web-services freely available on the Internet, which are used by thousands of researchers from many countries of the world to select the most promising substances for the synthesis and determine the priority areas for experimental testing of their biological activity.
Collapse
Affiliation(s)
- V V Poroikov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Bellera CL, Talevi A. Quantitative structure-activity relationship models for compounds with anticonvulsant activity. Expert Opin Drug Discov 2019; 14:653-665. [PMID: 31072145 DOI: 10.1080/17460441.2019.1613368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Third-generation antiepileptic drugs have seemingly failed to improve the global figures of seizure control and can still be regarded as symptomatic treatments. Quantitative structure-activity relationships (QSAR) can be used to guide hit-to-lead and lead optimization projects and applied to the large-scale virtual screening of chemical libraries. Areas covered: In this review, the authors cover reports on QSAR models related to antiepileptic drugs and drug targets in epilepsy, analyzing whether they refer to classic or non-classic QSAR and if they apply QSAR as a descriptive or predictive approach, among other considerations. The article finally focuses on a more detailed discussion of those predictive studies which include some sort of experimental validation, i.e. papers in which the reported models have been used to identify novel active compounds which have been tested in vitro and/or in vivo. Expert opinion: There are significant opportunities to apply the QSAR methodology to assist the discovery of more efficacious antiepileptic drugs. Considering the intrinsic complexity of the disorder, such applications should focus on state-of-the-art approximations (e.g. systemic, multi-target and multi-scale QSAR as well as ensemble and deep learning) and modeling the effects on novel drug targets and modern screening tools.
Collapse
Affiliation(s)
- Carolina L Bellera
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Alan Talevi
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
8
|
van den Brink WJ, Hankemeier T, van der Graaf PH, de Lange ECM. Bundling arrows: improving translational CNS drug development by integrated PK/PD-metabolomics. Expert Opin Drug Discov 2018. [DOI: 10.1080/17460441.2018.1446935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- W. J. van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - P. H. van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara QSP, Canterbury Innovation House, Canterbury, United Kingdom
| | - E. C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Bellera CL, Di Ianni ME, Talevi A. The application of molecular topology for ulcerative colitis drug discovery. Expert Opin Drug Discov 2017; 13:89-101. [PMID: 29088918 DOI: 10.1080/17460441.2018.1396314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although the therapeutic arsenal against ulcerative colitis has greatly expanded (including the revolutionary advent of biologics), there remain patients who are refractory to current medications while the safety of the available therapeutics could also be improved. Molecular topology provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner, and its applications in the field of ulcerative colitis have slowly begun to flourish. Areas covered: After discussing the basics of molecular topology, the authors review QSAR models focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on topological descriptors. Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation or practical applications. Interestingly, mechanism-independent models based on phenotypic responses have recently been reported. Such models are in agreement with the recent interest raised by network pharmacology as a potential solution for complex disorders. These and other similar studies applying molecular topology suggest that some therapeutic categories may present a 'topological pattern' that goes beyond a specific mechanism of action.
Collapse
Affiliation(s)
- Carolina L Bellera
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| | - Mauricio E Di Ianni
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| | - Alan Talevi
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| |
Collapse
|
10
|
Rakotosaona R, Randrianarivo E, Rasoanaivo P, Nicoletti M, Benelli G, Maggi F. Effect of the Leaf Essential Oil from Cinnamosma madagascariensis Danguy on Pentylenetetrazol-induced Seizure in Rats. Chem Biodivers 2017; 14. [PMID: 28657174 DOI: 10.1002/cbdv.201700256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 11/12/2022]
Abstract
In the Malagasy traditional practices, the smoke from burning leaves of Cinnamosma madagascariensis Danguy is inhaled to treat brain disorders such as dementia, epilepsy, and headache. In the present work, we have evaluated the in vivo anticonvulsant effects of the essential oil from leaves of C. madagascariensis (CMEO). CMEO was isolated by steam distillation. The anticonvulsant activity of CMEO (0.4 and 0.8 ml/kg bw) administered subcutaneously was evaluated on pentylenetetrazol (PTZ)-induced seizures in Wistar rats; diazepam was used as positive control. Linalool, limonene, and myrcene were the major CMEO constituents. At the dose of 0.8 ml/kg, CMEO completely arrested the PTZ-induced convulsions with moderate sedative effects. The traditional anticonvulsant use of C. madagascariensis was confirmed allowing us to candidate molecules from CMEO as potential drugs to treat convulsions associated with strong agitation.
Collapse
Affiliation(s)
- Rianasoambolanoro Rakotosaona
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Emmanuel Randrianarivo
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Philippe Rasoanaivo
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University, Piazzale Aldo moro 5, 00185, Rome, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
11
|
Abram M, Zagaja M, Mogilski S, Andres-Mach M, Latacz G, Baś S, Łuszczki JJ, Kieć-Kononowicz K, Kamiński K. Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties. J Med Chem 2017; 60:8565-8579. [DOI: 10.1021/acs.jmedchem.7b01114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michał Abram
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Mirosław Zagaja
- Isobolographic
Analysis Laboratory, Institute of Rural Health, Jaczewskiego
2, 20-090 Lublin, Poland
| | - Szczepan Mogilski
- Department
of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Andres-Mach
- Isobolographic
Analysis Laboratory, Institute of Rural Health, Jaczewskiego
2, 20-090 Lublin, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sebastian Baś
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Jarogniew J. Łuszczki
- Isobolographic
Analysis Laboratory, Institute of Rural Health, Jaczewskiego
2, 20-090 Lublin, Poland
- Department
of Pathophysiology, Medical University of Lublin, Jaczewskiego
8, 20-090 Lublin, Poland
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
12
|
Osuntokun OS, Olayiwola G, Oladele A, Ola I, AyokaAbiodun O. Chronic administration of gabapentin and a gabapentin-carbamazepine combination reversibly suppress testicular function in male Wistar rats ( Rattus norvegicus ). PATHOPHYSIOLOGY 2017; 24:63-69. [DOI: 10.1016/j.pathophys.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
|
13
|
Talevi A. Computational approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 2016; 11:1001-16. [DOI: 10.1080/17460441.2016.1216965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Open Label Trial of Add on Lacosamide Versus High Dose Levetiracetam Monotherapy in Patients With Breakthrough Seizures. Clin Neuropharmacol 2016; 39:128-31. [DOI: 10.1097/wnf.0000000000000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Neuropharmacology beyond reductionism - A likely prospect. Biosystems 2015; 141:1-9. [PMID: 26723231 DOI: 10.1016/j.biosystems.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/28/2023]
Abstract
Neuropharmacology had several major past successes, but the last few decades did not witness any leap forward in the drug treatment of brain disorders. Moreover, current drugs used in neurology and psychiatry alleviate the symptoms, while hardly curing any cause of disease, basically because the etiology of most neuro-psychic syndromes is but poorly known. This review argues that this largely derives from the unbalanced prevalence in neuroscience of the analytic reductionist approach, focused on the cellular and molecular level, while the understanding of integrated brain activities remains flimsier. The decline of drug discovery output in the last decades, quite obvious in neuropharmacology, coincided with the advent of the single target-focused search of potent ligands selective for a well-defined protein, deemed critical in a given pathology. However, all the widespread neuro-psychic troubles are multi-mechanistic and polygenic, their complex etiology making unsuited the single-target drug discovery. An evolving approach, based on systems biology considers that a disease expresses a disturbance of the network of interactions underlying organismic functions, rather than alteration of single molecular components. Accordingly, systems pharmacology seeks to restore a disturbed network via multi-targeted drugs. This review notices that neuropharmacology in fact relies on drugs which are multi-target, this feature having occurred just because those drugs were selected by phenotypic screening in vivo, or emerged from serendipitous clinical observations. The novel systems pharmacology aims, however, to devise ab initio multi-target drugs that will appropriately act on multiple molecular entities. Though this is a task much more complex than the single-target strategy, major informatics resources and computational tools for the systemic approach of drug discovery are already set forth and their rapid progress forecasts promising outcomes for neuropharmacology.
Collapse
|
16
|
Talevi A. Multi-target pharmacology: possibilities and limitations of the "skeleton key approach" from a medicinal chemist perspective. Front Pharmacol 2015; 6:205. [PMID: 26441661 PMCID: PMC4585027 DOI: 10.3389/fphar.2015.00205] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/04/2015] [Indexed: 11/23/2022] Open
Abstract
Multi-target drugs have raised considerable interest in the last decade owing to their advantages in the treatment of complex diseases and health conditions linked to drug resistance issues. Prospective drug repositioning to treat comorbid conditions is an additional, overlooked application of multi-target ligands. While medicinal chemists usually rely on some version of the lock and key paradigm to design novel therapeutics, modern pharmacology recognizes that the mid- and long-term effects of a given drug on a biological system may depend not only on the specific ligand-target recognition events but also on the influence of the repeated administration of a drug on the cell gene signature. The design of multi-target agents usually imposes challenging restrictions on the topology or flexibility of the candidate drugs, which are briefly discussed in the present article. Finally, computational strategies to approach the identification of novel multi-target agents are overviewed.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata , La Plata, Argentina
| |
Collapse
|
17
|
Margineanu DG. Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy Behav 2014; 38:131-42. [PMID: 24090772 DOI: 10.1016/j.yebeh.2013.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
The number of available anticonvulsant drugs increased in the period spanning over more than a century, amounting to the current panoply of nearly two dozen so-called antiepileptic drugs (AEDs). However, none of them actually prevents/reduces the post-brain insult development of epilepsy in man, and in no less than a third of patients with epilepsy, the seizures are not drug-controlled. Plausibly, the enduring limitation of AEDs' efficacy derives from the insufficient understanding of epileptic pathology. This review pinpoints the unbalanced reductionism of the analytic approaches that overlook the intrinsic complexity of epilepsy and of the drug resistance in epilepsy as the core conceptual flaw hampering the discovery of truly antiepileptogenic drugs. A rising awareness of the complexity of epileptic pathology is, however, brought about by the emergence of nonreductionist systems biology (SB) that considers the networks of interactions underlying the normal organismic functions and of SB-based systems (network) pharmacology that aims to restore pathological networks. By now, the systems pharmacology approaches of AED discovery are fairly meager, but their forthcoming development is both a necessity and a realistic prospect, explored in this review.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
18
|
A Drug Mystery of Heterocycles: Various Molecules for One Target or One Compound for Multiple Targets? Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1229-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Jin M, Dai Y, Xu C, Wang Y, Wang S, Chen Z. Effects of meclofenamic acid on limbic epileptogenesis in mice kindling models. Neurosci Lett 2013; 543:110-4. [PMID: 23567745 DOI: 10.1016/j.neulet.2013.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 02/01/2023]
Abstract
The most avid goal for antiepileptic drugs (AEDs) development today is to discover potential agents to prevent epilepsy or slow the process of epileptogenesis. Accumulating evidence reveals that gap junctions in the brain may be involved in epileptogenesis. Meclofenamic acid (MFA), a gap junction blocker, has not yet been applied in epileptogenic models to test whether it has antiepileptogenic or disease-modifying properties or not. In this study, we investigated the effects of MFA on limbic epileptogenesis in amygdaloid kindling and hippocampus rapid kindling models in mice. We found that intracerebroventricular (i.c.v., 2 μl) administration of either dose of MFA (100 μM, 1mM or 100mM) 15 min prior daily kindling stimulus decreased seizure stage, shortened the after-discharge duration (ADD) and increased the number of stimulations required to elicit stage 5 seizure. MFA also prevented the establishment of post-kindling enhanced amygdala excitability, evident as the increase of afterdischarge threshold (ADT) compared with pre-kindling values. Furthermore, MFA retarded kindling acquisition in mice hippocampus rapid kindling model as well, which demonstrated that the antiepileptogenic effects of MFA were not specific to the amygdala but also occur in other limbic structures such as the hippocampus. Our results confirm that MFA can slow the limbic epileptogenesis in both amygdaloid kindling and hippocampus rapid kindling models, and indicate that MFA may be a potential drug that has antiepileptogenic or disease-modifying properties.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
20
|
Proctor A, Bianchi MT. Clinical pharmacology in sleep medicine. ISRN PHARMACOLOGY 2012; 2012:914168. [PMID: 23213564 PMCID: PMC3504423 DOI: 10.5402/2012/914168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
Abstract
The basic treatment goals of pharmacological therapies in sleep medicine are to improve waking function by either improving sleep or by increasing energy during wakefulness. Stimulants to improve waking function include amphetamine derivatives, modafinil, and caffeine. Sleep aids encompass several classes, from benzodiazepine hypnotics to over-the-counter antihistamines. Other medications used in sleep medicine include those initially used in other disorders, such as epilepsy, Parkinson's disease, and psychiatric disorders. As these medications are prescribed or encountered by providers in diverse fields of medicine, it is important to recognize the distribution of adverse effects, drug interaction profiles, metabolism, and cytochrome substrate activity. In this paper, we review the pharmacological armamentarium in the field of sleep medicine to provide a framework for risk-benefit considerations in clinical practice.
Collapse
Affiliation(s)
- Ashley Proctor
- Sleep Division, Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA 02114, USA
| | | |
Collapse
|
21
|
|
22
|
The antidepressant drug fluoxetine inhibits persistent sodium currents and seizure-like events. Epilepsy Res 2012; 101:174-81. [DOI: 10.1016/j.eplepsyres.2012.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
|
23
|
Sinclair LI, Dineen PT, Malizia AL. Modulation of ion channels in clinical psychopharmacology: adults and younger people. Expert Rev Clin Pharmacol 2012; 3:397-416. [PMID: 22111619 DOI: 10.1586/ecp.10.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review focuses on the use of Na(+), Ca(2+) and Cl(-) channel modulators in psychiatric disease. Drugs that modulate ion channels have been used in psychiatry for more than a century, and in this review we critically evaluate clinical research that reports the therapeutic effects of drugs acting on GABA(A), voltage-gated Na(+) and voltage-gated Ca(2+) channels in pediatric and adult patients. As in other fields, the evidence underpinning the use of medicines in younger people is far less robust than for adults. In addition, we discuss some current developments and highlight clinical disorders in which current molecules could be further tested. Notable success stories, such as benzodiazepines (in sleep and anxiety disorders) and antiepileptics (in bipolar disorder), have been the result of serendipitous discoveries or refinements of serendipitous discoveries, as in all other major treatments in psychiatry. Genomic, high-throughput screening and molecular pharmacology discoveries may, however, guide further developments in the future. This could include increased research in promising targets that have been perceived as commercially risky, such as selective α-subunit GABA(A) receptors.
Collapse
Affiliation(s)
- Lindsey I Sinclair
- Psychopharmacology Unit, Department of Community Based Medicine, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
24
|
Margineanu DG. Systems biology impact on antiepileptic drug discovery. Epilepsy Res 2011; 98:104-15. [PMID: 22055355 DOI: 10.1016/j.eplepsyres.2011.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/21/2011] [Accepted: 10/06/2011] [Indexed: 01/22/2023]
Abstract
Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
25
|
Bianchi MT, Clark AG, Fisher JL. The wake-promoting transmitter histamine preferentially enhances α-4 subunit-containing GABAA receptors. Neuropharmacology 2011; 61:747-52. [PMID: 21640733 DOI: 10.1016/j.neuropharm.2011.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 12/17/2022]
Abstract
Histamine is an important wake-promoting neurotransmitter that activates seven-transmembrane G-protein coupled histamine receptors. However, histamine demonstrates target promiscuity, including direct interaction with the structurally unrelated glutamate (NMDA) and GABA(A) receptor channels. Previous work showed that histamine enhances the activity of recombinant GABA(A) receptor isoforms typically found in synaptic locations, although co-release of histamine and GABA is not known to occur in vivo. Here we used patch clamp recordings of various recombinant GABA(A) receptor isoforms (α1-6, β1-3, γ1-3, δ) to test the hypothesis that histamine might show subunit preference under low GABA concentration (extrasynaptic) conditions. We found that histamine potentiated the whole-cell responses to GABA for all tested subunit combinations. However, the magnitude of enhancement was largest (∼400% of EC(10) GABA-evoked currents) with α4β3 and α4β3X isoforms, where X could be γ or δ. In contrast, histamine (1 mM) had small effects on prolonging deactivation of α4β3γ2 receptors following brief (5 ms) pulses of 1 mM GABA. These findings suggest GABA-histamine cross-talk may occur preferentially at low GABA concentrations, which could theoretically be inhibitory (via enhancing tonic inhibition), directly excitatory (via enhancing presynaptic GABAergic signaling), or indirectly excitatory (via inhibiting GABAergic interneurons).
Collapse
Affiliation(s)
- Matt T Bianchi
- Sleep Division, Neurology Department, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
26
|
Abstract
Heart failure is an important cause of morbidity and mortality in individuals of all ages. The many-faceted nature of the clinical heart failure syndrome has historically frustrated attempts to develop an overarching explanative theory. However, much useful information has been gained by basic and clinical investigation, even though a comprehensive understanding of heart failure has been elusive. Heart failure is a growing problem, in both adult and pediatric populations, for which standard medical therapy, as of 2010, can have positive effects, but these are usually limited and progressively diminish with time in most patients. If we want curative or near-curative therapy that will return patients to a normal state of health at a feasible cost, much better diagnostic and therapeutic technologies need to be developed. This review addresses the vexing group of heart failure etiologies that include cardiomyopathies and other ventricular dysfunctions of various types, for which current therapy is only modestly effective. Although there are many unique aspects to heart failure in patients with pediatric and congenital heart disease, many of the innovative approaches that are being developed for the care of adults with heart failure will be applicable to heart failure in childhood.
Collapse
Affiliation(s)
- Daniel J Penny
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
28
|
Rational Polytherapy with Antiepileptic Drugs. Pharmaceuticals (Basel) 2010; 3:2362-2379. [PMID: 27713357 PMCID: PMC4033928 DOI: 10.3390/ph3082362] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022] Open
Abstract
Approximately 30-40% of patients do not achieve seizure control with a single antiepileptic drug (AED). With the advent of multiple AEDs in the past 15 years, rational polytherapy, the goal of finding combinations of AEDs that have favorable characteristics, has become of greater importance. We review the theoretical considerations based on AED mechanism of action, animal models, human studies in this field, and the challenges in finding such optimal combinations. Several case scenarios are presented, illustrating examples of rational polytherapy.
Collapse
|
29
|
Abstract
The prevalence of obesity has increased dramatically worldwide, whereas the types of treatment and their efficacy have not substantially changed over the last two decades. Additionally, drugs used to control weight gain could occasionally create untoward effects in cardiovascular functions, as well as in behaviors, memory, sleep, and emotions because the molecular machinery responsible for ingestion control is interconnected with or shared by the above domains. How each group of drugs preserves the privacy of its message in the mutual network is not fully understood. In the present essay, the graph theory approach was used to explore some aspects of molecular signaling as though they were a 'language'. Its emphasis is on 'molecular polysemy', a term that refers to the ability of biomolecules to be used like words in natural languages more than one-way. This has physiological and clinical implications, in particular when planning drug designs with "specially engineered shotgun loads" that target a combination of biomolecules that assure a better therapeutic outcome without causing deficits in connected but patho-physiologically irrelevant bystanders.
Collapse
Affiliation(s)
- Michael Myslobodsky
- Clinical Brain Disorders Branch, NIMH/National Institutes of Health, Bethesda, MD 20892-1379, USA.
| | | |
Collapse
|
30
|
Bianchi MT, Botzolakis EJ. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity? BMC Pharmacol 2010; 10:3. [PMID: 20196850 PMCID: PMC2838756 DOI: 10.1186/1471-2210-10-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 03/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The traditional emphasis on developing high specificity pharmaceuticals ("magic bullets") for the treatment of Neurological and Psychiatric disorders is being challenged by emerging pathophysiology concepts that view disease states as abnormal interactions within complex networks of molecular and cellular components. So-called network pharmacology focuses on modifying the behavior of entire systems rather than individual components, a therapeutic strategy that would ideally employ single pharmacological agents capable of interacting with multiple targets ("magic shotguns"). For this approach to be successful, however, a framework for understanding pharmacological "promiscuity"--the ability of individual agents to modulate multiple molecular targets--is needed. PRESENTATION OF THE HYPOTHESIS Pharmacological promiscuity is more often the rule than the exception for drugs that target the central nervous system (CNS). We hypothesize that promiscuity is an important contributor to clinical efficacy. Modulation patterns of existing therapeutic agents may provide critical templates for future drug discovery in Neurology and Psychiatry. TESTING THE HYPOTHESIS To demonstrate the extent of pharmacological promiscuity and develop a framework for guiding drug screening, we reviewed the ability of 170 therapeutic agents and endogenous molecules to directly modulate neurotransmitter receptors, a class of historically attractive therapeutic targets in Neurology and Psychiatry. The results are summarized in the form of 1) receptor-centric maps that illustrate the degree of promiscuity for GABA-, glycine-, serotonin-, and acetylcholine-gated ion channels, and 2) drug-centric maps that illustrated how characterization of promiscuity can guide drug development. IMPLICATIONS OF THE HYPOTHESIS Developing promiscuity maps of approved neuro-pharmaceuticals will provide therapeutic class-based templates against which candidate compounds can be screened. Importantly, compounds previously rejected in traditional screens due to poor specificity could be reconsidered in this framework. Further testing will require high throughput assays to systematically characterize interactions between available CNS-active drugs and surface receptors, both ionotropic and metabotropic.
Collapse
Affiliation(s)
- Matt T Bianchi
- Neurology Department, Sleep Division, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
31
|
Bianchi MT. Promiscuous modulation of ion channels by anti-psychotic and anti-dementia medications. Med Hypotheses 2010; 74:297-300. [DOI: 10.1016/j.mehy.2009.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
|