1
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
2
|
Hong I, Kaang B. The complexity of ventral CA1 and its multiple functionalities. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12826. [PMID: 35815710 PMCID: PMC9744572 DOI: 10.1111/gbb.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
The hippocampus is one of the most widely investigated brain regions with its massive contributions to multiple behaviours. Especially, the hippocampus is subdivided into the dorsal and ventral parts playing distinct roles. In this review, we will focus on the ventral hippocampus, especially the ventral CA1 (vCA1), whose role is being actively discovered. vCA1 is well known to be associated with emotion-like behaviour, in both positive (reward) and negative (aversive) stimuli. How can this small region in volume mediate such variety of responses? This question will be answered with technologies up to date that have allowed us to study in-depth the specific neural circuit and to map the complex connectivity.
Collapse
Affiliation(s)
- Ilgang Hong
- School of Biological SciencesSeoul National UniversitySeoulSouth Korea
| | - Bong‐Kiun Kaang
- School of Biological SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
3
|
Effect of dimethyl fumarate on the changes in the medial prefrontal cortex structure and behavior in the poly(I:C)-induced maternal immune activation model of schizophrenia in the male mice. Behav Brain Res 2022; 417:113581. [PMID: 34530042 DOI: 10.1016/j.bbr.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The link between maternal immune activation (MIA) and the risk of developing schizophrenia (SCZ) later in life has been of major focus in recent years. This link could be bridged by activated inflammatory pathways and excessive cytokine release resulting in adverse effects on behavior, histology, and cytoarchitecture. The down-regulatory effects of immunomodulatory agents on the activated glial cells and their therapeutic effects on schizophrenic patients are consistent with this hypothesis. OBJECTIVE We investigated whether treatment with the anti-inflammatory drug dimethyl fumarate (DMF) could rescue impacts of prenatal exposure to polyinosinic:polycytidylic acid [poly (I:C)]. METHODS Pregnant dams were administered poly(I:C) at gestational day 9.5. Offspring born from these mothers were treated with DMF for fourteen consecutive days from postnatal day 80 and were assessed behaviorally before and after treatment. The brains were then stained with Cresyl Violet or Golgi-Cox. In addition to the estimation of stereological parameters, cytoarchitectural changes were also evaluated in the medial prefrontal cortex. RESULTS MIA caused some abnormalities in behavior, as well as changes in the number of neurons and non-neurons. These alterations were also extended to pyramidal layer III neurons with a significant decrease in dendritic complexity and spine density which DMF treatment could prevent these changes. Furthermore, DMF treatment was also effective against abnormal exploratory and depression-related behavior, but not the changes in the number of cells. CONCLUSION These findings support the idea of using anti-inflammatory agents as adjunctive therapy in patients with SCZ.
Collapse
|
4
|
Kahn L, Sutton B, Winston HR, Abosch A, Thompson JA, Davis RA. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Real World Experience Post-FDA-Humanitarian Use Device Approval. Front Psychiatry 2021; 12:568932. [PMID: 33868034 PMCID: PMC8044872 DOI: 10.3389/fpsyt.2021.568932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: While case series have established the efficacy of deep brain stimulation (DBS) in treating obsessive-compulsive disorder (OCD), it has been our experience that few OCD patients present without comorbidities that affect outcomes associated with DBS treatment. Here we present our experience with DBS therapy for OCD in patients who all have comorbid disease, together with the results of our programming strategies. Methods: For this case series, we assessed five patients who underwent ventral capsule/ventral striatum (VC/VS) DBS for OCD between 2015 and 2019 at the University of Colorado Hospital. Every patient in this cohort exhibited comorbidities, including substance use disorders, eating disorder, tic disorder, and autism spectrum disorder. We conducted an IRB-approved, retrospective study of programming modifications and treatment response over the course of DBS therapy. Results: In addition to patients' subjective reports of improvement, we observed significant improvement in the Yale-Brown Obsessive-Compulsive Scale (44%), the Montgomery-Asberg Depression Rating Scale (53%), the Quality of Life Enjoyment and Satisfaction Questionnaire (27%), and the Hamilton Anxiety Rating scales (34.9%) following DBS. With respect to co-morbid disease, there was a significant improvement in a patient with tic disorder's Total Tic Severity Score (TTSS) (p = 0.005). Conclusions: DBS remains an efficacious tool for the treatment of OCD, even in patients with significant comorbidities in whom DBS has not previously been investigated. Efficacious treatment results not only from the accurate placement of the electrodes by the surgeon but also from programming by the psychiatrist.
Collapse
Affiliation(s)
- Lora Kahn
- Department of Neurosurgery, Ochsner Health, Tulane University-Ochsner Health Neurosurgery Program, New Orleans, LA, United States
| | - Brianne Sutton
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Helena R. Winston
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel A. Davis
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Differentiating patients with schizophrenia from healthy controls by hippocampal subfields using radiomics. Schizophr Res 2020; 223:337-344. [PMID: 32988740 DOI: 10.1016/j.schres.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Accurately diagnosing schizophrenia is still challenging due to the lack of validated biomarkers. Here, we aimed to investigate whether radiomic features in bilateral hippocampal subfields from magnetic resonance images (MRIs) can differentiate patients with schizophrenia from healthy controls (HCs). METHODS A total of 152 participants with MRI (86 schizophrenia and 66 HCs) were allocated to training (n = 106) and test (n = 46) sets. Radiomic features (n = 642) from the bilateral hippocampal subfields processed with automatic segmentation techniques were extracted from T1-weighted MRIs. After feature selection, various combinations of classifiers (logistic regression, extra-trees, AdaBoost, XGBoost, or support vector machine) and subsampling were trained. The performance of the classifier was validated in the test set by determining the area under the curve (AUC). Furthermore, the association between selected radiomic features and clinical symptoms in schizophrenia was assessed. RESULTS Thirty radiomic features were identified to differentiate participants with schizophrenia from HCs. In the training set, the AUC exhibited poor to good performance (range: 0.683-0.861). The best performing radiomics model in the test set was achieved by the mutual information feature selection and logistic regression with an AUC, accuracy, sensitivity, and specificity of 0.821 (95% confidence interval 0.681-0.961), 82.1%, 76.9%, and 70%, respectively. Greater maximum values in the left cornu ammonis 1-3 subfield were associated with a higher severity of positive symptoms and general psychopathology in participants with schizophrenia. CONCLUSION Radiomic features from hippocampal subfields may be useful biomarkers for identifying schizophrenia.
Collapse
|
6
|
Volumetric and morphological characteristics of the hippocampus are associated with progression to schizophrenia in patients with first-episode psychosis. Eur Psychiatry 2020; 45:1-5. [DOI: 10.1016/j.eurpsy.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/06/2023] Open
Abstract
AbstractBackground:Abnormalities in the hippocampus have been implicated in the pathophysiology of psychosis. However, it is still unclear whether certain abnormalities are a pre-existing vulnerability factor, a sign of disease progression or a consequence of environmental factors. We hypothesized that first-episode psychosis patients who progress to schizophrenia after one year of follow up will display greater volumetric and morphological changes from the very beginning of the disorder.Methods:We studied the hippocampus of 41 patients with a first-episode psychosis and 41 matched healthy controls. MRI was performed at the time of the inclusion in the study. After one year, the whole sample was reevaluated and divided in two groups depending on the diagnoses (schizophrenia vs. non-schizophrenia).Results:Patients who progressed to schizophrenia showed a significantly smaller left hippocampus volume than control group and no-schizophrenia group (F = 3.54; df = 2, 77; P = 0.03). We also found significant differences in the morphology of the anterior hippocampus (CA1) of patients with first-episode psychosis who developed schizophrenia compared with patients who did not.Conclusions:These results are consistent with the assumption of hyperfunctioning dopaminergic cortico-subcortical circuits in schizophrenia, which might be related with an alteration of subcortical structures, such as the hippocampus, along the course of the disease. According with these results, hippocampus abnormalities may serve as a prognostic marker of clinical outcome in patients with a first-episode psychosis.
Collapse
|
7
|
Optogenetic inhibition of ventral hippocampal neurons alleviates associative motor learning dysfunction in a rodent model of schizophrenia. PLoS One 2019; 14:e0227200. [PMID: 31891640 PMCID: PMC6938361 DOI: 10.1371/journal.pone.0227200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/14/2019] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a serious and incurable mental disorder characterized by clinical manifestations of positive and negative symptoms and cognitive dysfunction. High-frequency deep brain stimulation (DBS) of the ventral hippocampus (VHP) has been recently applied as a therapeutic approach for SZ in both experimental and clinical studies. However, little is known about the precise mechanism of VHP-DBS treatment for SZ and the role of hippocampal cell activation in the pathogenesis of SZ. With optogenetic technology in this study, we tried to inhibit neuronal activity in the VHP which has dense projections to the prefrontal cortex, before measuring long stumulus-induced delay eyeblink conditioning (long-dEBC) in a rodent model of SZ. Rats were administrated with phencyclidine (PCP, 3 mg/kg, 1/d, ip) for successive 7 days before optogenetic intervention. The current data show that PCP administration causes significant impairment in the acquisition and timing of long-dEBC; the inhibition of bilateral VHP neurons alleviates the decreased acquisition and impaired timing of longd-dEBC in PCP-administered rats. The results provide direct evidence at the cellular level that the inhibition of VHP neuronal cells may be a prominent effect of hippocampal DBS intervention, and increased activity in the hippocampal network play a pivotal role in SZ.
Collapse
|
8
|
Kovner R, Oler JA, Kalin NH. Cortico-Limbic Interactions Mediate Adaptive and Maladaptive Responses Relevant to Psychopathology. Am J Psychiatry 2019; 176:987-999. [PMID: 31787014 PMCID: PMC7014786 DOI: 10.1176/appi.ajp.2019.19101064] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cortico-limbic circuits provide a substrate for adaptive behavioral and emotional responses. However, dysfunction of these circuits can result in maladaptive responses that are associated with psychopathology. The prefrontal-limbic pathways are of particular interest because they facilitate interactions among emotion, cognition, and decision-making functions, all of which are affected in psychiatric disorders. Regulatory aspects of the prefrontal cortex (PFC) are especially relevant to human psychopathology, as the PFC, in addition to its functions, is more recent from an evolutionary perspective and is considerably more complex in human and nonhuman primates compared with other species. This review provides a neuroanatomical and functional perspective of selected regions of the limbic system, the medial temporal lobe structures-the hippocampus and amygdala as well as regions of the PFC. Beyond the specific brain regions, emphasis is placed on the structure and function of critical PFC-limbic circuits, linking alterations in the processing of information across these pathways to the pathophysiology and psychopathology of various psychiatric illnesses.
Collapse
Affiliation(s)
- Rothem Kovner
- Department of Neuroscience and Kavli Institute of Neuroscience,
Yale School of Medicine, New Haven, Conn
| | - Jonathan A. Oler
- Department of Psychiatry and HealthEmotions Research Institute,
University of Wisconsin, Madison
| | - Ned H. Kalin
- Department of Psychiatry and HealthEmotions Research Institute,
University of Wisconsin, Madison
| |
Collapse
|
9
|
Zsilla G, Hegyi DE, Baranyi M, Vizi ES. 3,4-Methylenedioxymethamphetamine, mephedrone, and β-phenylethylamine release dopamine from the cytoplasm by means of transporters and keep the concentration high and constant by blocking reuptake. Eur J Pharmacol 2018; 837:72-80. [DOI: 10.1016/j.ejphar.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023]
|
10
|
Schizophrenia and neurosurgery: A dark past with hope of a brighter future. J Clin Neurosci 2016; 34:53-58. [DOI: 10.1016/j.jocn.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/05/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
11
|
Bikovsky L, Hadar R, Soto-Montenegro ML, Klein J, Weiner I, Desco M, Pascau J, Winter C, Hamani C. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia. Exp Neurol 2016; 283:142-50. [PMID: 27302677 DOI: 10.1016/j.expneurol.2016.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Deep brain stimulation (DBS) is a surgical technique currently investigated for medically-refractory psychiatric disorders. Here, we use the poly I:C rat model of schizophrenia to study the effects of medial prefrontal cortex (mPFC) and nucleus accumbens (Nacc) DBS on two behavioral schizophrenia-like deficits, i.e. sensorimotor gating, as reflected by disrupted prepulse inhibition (PPI), and attentional selectivity, as reflected by disrupted latent inhibition (LI). In addition, the neurocircuitry influenced by DBS was studied using FDG PET. We found that mPFC- and Nacc-DBS alleviated PPI and LI abnormalities in poly I:C offspring, whereas Nacc- but not mPFC-DBS disrupted PPI and LI in saline offspring. In saline offspring, mPFC-DBS increased metabolism in the parietal cortex, striatum, ventral hippocampus and Nacc, while reducing it in the brainstem, cerebellum, hypothalamus and periaqueductal gray. Nacc-DBS, on the other hand, increased activity in the ventral hippocampus and olfactory bulb and reduced it in the septal area, brainstem, periaqueductal gray and hypothalamus. In poly I:C offspring changes in metabolism following mPFC-DBS were similar to those recorded in saline offspring, except for a reduced activity in the brainstem and hypothalamus. In contrast, Nacc-DBS did not induce any statistical changes in brain metabolism in poly I:C offspring. Our study shows that mPFC- or Nacc-DBS delivered to the adult progeny of poly I:C treated dams improves deficits in PPI and LI. Despite common behavioral responses, stimulation in the two targets induced different metabolic effects.
Collapse
Affiliation(s)
- Lior Bikovsky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Julia Klein
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| | - Ina Weiner
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| |
Collapse
|
12
|
Taylor CJ, Ohline SM, Moss T, Ulrich K, Abraham WC. The persistence of long-term potentiation in the projection from ventral hippocampus to medial prefrontal cortex in awake rats. Eur J Neurosci 2016; 43:811-22. [PMID: 26750170 DOI: 10.1111/ejn.13167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
A potentially vital pathway in the processing of spatial memory is the pathway from ventral hippocampus to medial prefrontal cortex (vHPC-mPFC). To assess long-term potentiation (LTP) induction and maintenance across days in this pathway, the effects of several induction paradigms were compared in awake, freely moving rats. Two different high-frequency stimulation (HFS) protocols generated LTP lasting no longer than 1 week. However, after delivering HFS on three consecutive days, LTP lasted an average of 20 days, due mainly to the greater initial induction. Thus the pathway does not require extensive multi-day stimulation to induce LTP, as for other intra-neocortical pathways, but also it does not exhibit the extremely long-lasting and stable LTP previously observed in area CA1 and the dentate gyrus. By using bilaterally placed stimulating and recording electrodes, we found that HFS in one vHPC generated responses and LTP in the contralateral mPFC, even when the ipsilateral mPFC was inactivated by CNQX. We attribute this crossed response to a polysynaptic pathway from the vHPC to the contralateral mPFC. Finally, we found that repeated overnight exposure to an enriched environment also potentiated the vHPC-mPFC response, but this too was a transient effect lasting < 9 days, declining to baseline even before the enriched environment treatment was completed. Overall, these findings are consistent with the view that potentiation of vHPC-mPFC pathway may play a key role in promoting the hippocampus-mPFC interplay that, over days, leads to long-term storage in the frontal cortex of memories that are independent of the hippocampus.
Collapse
Affiliation(s)
- Chanel J Taylor
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Health Research Centre, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Shane M Ohline
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Health Research Centre, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Research New Zealand, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Timothy Moss
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Katharina Ulrich
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Health Research Centre, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Health Research Centre, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Brain Research New Zealand, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
13
|
Wang S, Ren H, Xu J, Yu Y, Han S, Qiao H, Cheng S, Xu C, An S, Ju B, Yu C, Wang C, Wang T, Yang Z, Taylor EW, Zhao L. Diminished serum repetin levels in patients with schizophrenia and bipolar disorder. Sci Rep 2015; 5:7977. [PMID: 25613293 PMCID: PMC4303898 DOI: 10.1038/srep07977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Repetin (RPTN) protein is a member of S100 family and is known to be expressed in the normal epidermis. Here we show that RPTN is ubiquitously expressed in both mouse and human brain, with relatively high levels in choroid plexus, hippocampus and prefrontal cortex. To investigate the expression of RPTN in neuropsychiatric disorders, we determined serum levels of RPTN in patients with schizophrenia (n = 88) or bipolar disorder (n = 34) and in chronic psychostimulant users (n = 91). We also studied its expression in a mouse model of chronic unpredictable mild stress (CUMS). The results showed that serum RPTN levels were significantly diminished in patients with schizophrenia and bipolar disorder or in psychostimulant users, compared with healthy subjects (n = 115) or age-matched controls (n = 92) (p < 0.0001). In CUMS mice, RPTN expression in hippocampus and prefrontal cortex was reduced with progression of the CUMS procedure; the serum RPTN level remained unchanged. Since CUMS is a model for depression and methamphetamine (METH) abuse induced psychosis recapitulates many of the psychotic symptoms of schizophrenia, the results from this study may imply that RPTN plays a potential role in emotional and cognitive processing; its decrease in serum may indicate its involvement in the pathogenesis of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huixun Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Xu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Yu
- Department of Clinical Chemistry, Xi'an mental health center, Xi'an 710061, China
| | - Shuiping Han
- Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Qiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shaoli Cheng
- Center for Experimental Morphology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shucheng An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bomiao Ju
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chengyuan Yu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chanyuan Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Ethan Will Taylor
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Lijun Zhao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
14
|
Talati P, Rane S, Kose S, Blackford JU, Gore J, Donahue MJ, Heckers S. Increased hippocampal CA1 cerebral blood volume in schizophrenia. NEUROIMAGE-CLINICAL 2014; 5:359-64. [PMID: 25161901 PMCID: PMC4141978 DOI: 10.1016/j.nicl.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia. However, there is a debate whether the CA1 or the CA2/3 subfield is selectively affected. We studied 15 schizophrenia patients and 15 matched healthy control subjects with 3T steady state, gadolinium-enhanced, absolute cerebral blood volume (CBV) maps, perpendicular to the long axis of the hippocampus. The subfields of the hippocampal formation (subiculum, CA1, CA2/3, and hilus/dentate gyrus) were manually segmented to establish CBV values. Comparing anterior CA1 and CA2/3 CBV between patients and controls revealed a significant subfield-by-diagnosis interaction. This interaction was due to the combined effect of a trend of increased CA1 CBV (p = .06) and non-significantly decreased CA2/3 CBV (p = 0.14) in patients relative to healthy controls. These results support the emerging hypothesis of increased hippocampal activity as a biomarker of schizophrenia and highlight the importance of subfield-level investigations. Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia Subfield-specificity hyperactivity (anterior CA1 versus CA2/3) is currently debated We used contrast-enhanced MRI to test hyperactivity in these two subfields We find a significant diagnosis by group interaction due to the combined effect of a trend of increased CA1 CBV and non-significantly decreased CA2/3 CBV in patients compared to healthy controls No significant group differences in the anterior subiculum and dentate gyrus CBV
Collapse
Affiliation(s)
- Pratik Talati
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA ; Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| | - Swati Rane
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Samet Kose
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| | | | - John Gore
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Manus J Donahue
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA ; Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
15
|
Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossío LF, Goetz T, Matyash M, Kettenmann H, Winter C, Wolf SA. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun 2014; 38:175-84. [PMID: 24509090 DOI: 10.1016/j.bbi.2014.01.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 01/27/2023] Open
Abstract
Adult neurogenesis in the hippocampus is impaired in schizophrenic patients and in an animal model of schizophrenia. Amongst a plethora of regulators, the immune system has been shown repeatedly to strongly modulate neurogenesis under physiological and pathological conditions. It is well accepted, that schizophrenic patients have an aberrant peripheral immune status, which is also reflected in the animal model. The microglia as the intrinsic immune competent cells of the brain have recently come into focus as possible therapeutic targets in schizophrenia. We here used a maternal immune stimulation rodent model of schizophrenia in which polyinosinic-polycytidilic acid (Poly I:C) was injected into pregnant rats to mimic an anti-viral immune response. We identified microglia IL-1β and TNF-α increase constituting the factors correlating best with decreases in net-neurogenesis and impairment in pre-pulse inhibition of a startle response in the Poly I:C model. Treatment with the antibiotic minocycline (3mg/kg/day) normalized microglial cytokine production in the hippocampus and rescued neurogenesis and behavior. We could also show that enhanced microglial TNF-α and IL-1β production in the hippocampus was accompanied by a decrease in the pro-proliferative TNFR2 receptor expression on neuronal progenitor cells, which could be attenuated by minocycline. These findings strongly support the idea to use anti-inflammatory drugs to target microglia activation as an adjunctive therapy in schizophrenic patients.
Collapse
Affiliation(s)
- Daniele Mattei
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Anaïs Djodari-Irani
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, 10117 Berlin, Germany
| | - Ravit Hadar
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Andreas Pelz
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | | | - Thomas Goetz
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Marina Matyash
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Christine Winter
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Susanne A Wolf
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany.
| |
Collapse
|
16
|
Ewing SG, Porr B, Pratt JA. Deep brain stimulation of the mediodorsal thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the frontal cortex. J Chem Neuroanat 2013; 52:20-4. [PMID: 23660497 DOI: 10.1016/j.jchemneu.2013.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 11/16/2022]
Abstract
This study explores the regions activated by deep brain stimulation of the mediodorsal thalamic nucleus through examination of immediate early genes as markers of neuronal activation. Stimulation was delivered unilaterally with constant current 100 μs duration pulses at a frequency of 130 Hz delivered at an amplitude of 200 μA for 3h. Brains were removed, sectioned and radio-labelled for the IEGs zif-268 and c-fos. In anaesthetised rats, deep brain stimulation of mediodorsal thalamic nucleus produced robust increases in the expression of zif-268 but not c-fos localised to regions that are reciprocally connected with the mediodorsal thalamic nucleus, including the prelimbic and orbitofrontal cortices, and the premotor cortex indicating an increase in synaptic activity in these regions. These findings map those brain regions that are persistently, rather than transiently, activated by high frequency electrical stimulation of the mediodorsal thalamic nucleus by a putatively antidromic mechanism which may be relevant to neuropsychiatric disorders such as schizophrenia in which thalamocortical systems are disrupted and in which DBS protocols are being considered.
Collapse
Affiliation(s)
- Samuel G Ewing
- Bioengineering, University of Strathclyde, The Wolfson Centre, 106 Rottenrow East, Glasgow G1 0NW, UK.
| | | | | |
Collapse
|