1
|
Pal RS, Jawaid T, Rahman MA, Verma R, Patra PK, Vijaypal SV, Pal Y, Upadhyay R. Metformin's anticancer odyssey: Revealing multifaceted mechanisms across diverse neoplastic terrains- a critical review. Biochimie 2025; 233:109-121. [PMID: 40058683 DOI: 10.1016/j.biochi.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Metformin, initially prescribed as an oral hypoglycemic medication for type 2 diabetes, has recently gained attention for its potential anticancer effects. Its history dates to 1918, when guanidine, a component of the traditional European herb Galega officinalis, was found to reduce glycemia. This review precisely examines the mechanisms underlying Metformin's anticancer effects across various neoplastic conditions. This investigation explores the complex interactions between metformin and major signaling pathways associated with carcinogenesis, including AMP-activated protein kinase (AMPK), mTOR, and insulin-like growth factor (IGF) pathways. The review emphasizes Metformin's diverse effects on angiogenesis, inflammation, apoptosis, and cellular metabolism in cancer cells. Additionally, new data on metformin's capacity to alter the tumor microenvironment and enhance immune surveillance systems against cancer are examined. The review underscores Metformin's potential for repurposing in oncology, emphasizing its clinical relevance as an adjuvant therapy for various cancers. The review provides insightful information about the complex anticancer mechanisms of metformin by combining data from preclinical and clinical studies. These findings not only broaden our knowledge of the effects of metformin but also open new avenues for oncology research and treatment developments.
Collapse
Affiliation(s)
- Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - M A Rahman
- Teegala Krishna Reddy College of Pharmacy, Hyderabad, Telangana, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, Uttar Pradesh, India
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | | | - Yogendra Pal
- School of Pharmaceutical Science, RIMT University, Mandi Gobindgarh, Punjab, India
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Pokrzyk J, Kulczyńska-Przybik A, Guzik-Makaruk E, Winkel I, Mroczko B. Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer's Disease. Int J Mol Sci 2025; 26:1935. [PMID: 40076562 PMCID: PMC11900921 DOI: 10.3390/ijms26051935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The role of amyloid beta peptide (Aβ) in memory regulation has been a subject of substantial interest and debate in neuroscience, because of both physiological and clinical issues. Understanding the dual nature of Aβ in memory regulation is crucial for developing effective treatments for Alzheimer's disease (AD). Moreover, accurate detection and quantification methods of Aβ isoforms have been tested for diagnostic purposes and therapeutic interventions. This review provides insight into the current knowledge about the methods of amyloid beta detection in vivo and in vitro by fluid tests and brain imaging methods (PET), which allow for preclinical recognition of the disease. Currently, the priority in the development of new therapies for Alzheimer's disease has been given to potential changes in the progression of the disease. In light of increasing amounts of data, this review was focused on the diagnostic and therapeutic employment of amyloid beta in Alzheimer's disease.
Collapse
Affiliation(s)
- Justyna Pokrzyk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland; (J.P.); (B.M.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland; (J.P.); (B.M.)
| | | | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland; (J.P.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Son SM, Park SJ, Breusegem SY, Larrieu D, Rubinsztein DC. p300 nucleocytoplasmic shuttling underlies mTORC1 hyperactivation in Hutchinson-Gilford progeria syndrome. Nat Cell Biol 2024; 26:235-249. [PMID: 38267537 PMCID: PMC10866696 DOI: 10.1038/s41556-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism and autophagy. Multiple pathways modulate mTORC1 in response to nutrients. Here we describe that nucleus-cytoplasmic shuttling of p300/EP300 regulates mTORC1 activity in response to amino acid or glucose levels. Depletion of these nutrients causes cytoplasm-to-nucleus relocalization of p300 that decreases acetylation of the mTORC1 component raptor, thereby reducing mTORC1 activity and activating autophagy. This is mediated by AMP-activated protein kinase-dependent phosphorylation of p300 at serine 89. Nutrient addition to starved cells results in protein phosphatase 2A-dependent dephosphorylation of nuclear p300, enabling its CRM1-dependent export to the cytoplasm to mediate mTORC1 reactivation. p300 shuttling regulates mTORC1 in most cell types and occurs in response to altered nutrients in diverse mouse tissues. Interestingly, p300 cytoplasm-nucleus shuttling is altered in cells from patients with Hutchinson-Gilford progeria syndrome. p300 mislocalization by the disease-causing protein, progerin, activates mTORC1 and inhibits autophagy, phenotypes that are normalized by modulating p300 shuttling. These results reveal how nutrients regulate mTORC1, a cytoplasmic complex, by shuttling its positive regulator p300 in and out of the nucleus, and how this pathway is misregulated in Hutchinson-Gilford progeria syndrome, causing mTORC1 hyperactivation and defective autophagy.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sophia Y Breusegem
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Delphine Larrieu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Murdocca M, Spitalieri P, Cappello A, Colasuonno F, Moreno S, Candi E, D'Apice MR, Novelli G, Sangiuolo F. Mitochondrial dysfunction in mandibular hypoplasia, deafness and progeroid features with concomitant lipodystrophy (MDPL) patients. Aging (Albany NY) 2022; 14:1651-1664. [PMID: 35196257 PMCID: PMC8908938 DOI: 10.18632/aging.203910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy is a rare, genetic, premature aging disease named MDPL Syndrome, due to almost always a de novo variant in POLD1 gene, encoding the DNA polymerase δ. In previous in vitro studies, we have already described several hallmarks of aging, including genetic damage, telomere shortening, cell senescence and proliferation defects. Since a clear connection has been reported between telomere shortening and mitochondria malfunction to initiate the aging process, we explored the role that mitochondrial metabolism and activity play in pathogenesis of MDPL Syndrome, an aspect that has not been addressed yet. We thus evaluated mtDNA copy number, assessing a significant decrease in mutated cells. The expression level of genes related to mitochondrial biogenesis and activity also revealed a significant reduction, highlighting a mitochondrial dysfunction in MDPL cells. Even the expression levels of mitochondrial marker SOD2, as assessed by immunofluorescence, were reduced. The decrease in this antioxidant enzyme correlated with increased production of mitochondrial ROS in MDPL cells, compared to WT. Consistent with these data, Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) analysis revealed in MDPL cells fewer mitochondria, which also displayed morphological abnormalities. Accordingly, we detected autophagic vacuoles containing partially digested mitochondria. Overall, our results demonstrate a dramatic impairment of mitochondrial biogenesis and activity in MDPL Syndrome. Administration of Metformin, though unable to restore mitochondrial impairment, proved efficient in rescuing nuclear abnormalities, suggesting its use to specifically ameliorate the premature aging phenotype.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome 00146, Italy.,IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| |
Collapse
|
6
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
7
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
8
|
Fischhuber K, Matzinger M, Heiss EH. AMPK Enhances Transcription of Selected Nrf2 Target Genes via Negative Regulation of Bach1. Front Cell Dev Biol 2020; 8:628. [PMID: 32760724 PMCID: PMC7372114 DOI: 10.3389/fcell.2020.00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
5'-AMP-activated protein kinase (AMPK) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) are main players in the cellular adaptive response to metabolic and oxidative/xenobiotic stress, respectively. AMPK does not only balance the rate of fuel catabolism versus anabolism but also emerges as regulator of gene expression. We here examined the influence of AMPK on Nrf2-dependent gene transcription and the potential interplay of the two cellular stress hubs. Using gene expression analyses in wt and AMPKα1 -/- or Nrf2 -/- mouse embryonal fibroblasts, we could show that AMPK only affected a portion of the entire of Nrf2-dependent transcriptome upon exposure to the Nrf2 activator sulforaphane (Sfn). Focusing on selected genes with positive regulation by Nrf2 and either positive or no further regulation by AMPK, we revealed that altered Nrf2 levels could not account for the distinct extent of transactivation of certain Nrf2 targets in wt and AMPK -/- cells (assessed by immunoblot). FAIRE-qPCR largely excluded distinct chromatin accessibility of selected Nrf2-responsive antioxidant response elements (ARE) within the regulatory gene regions in wt and AMPK-/- cells. However, expression analyses and ChIP-qPCR showed that in AMPK-/- cells, levels of BTB and CNC homology 1 (Bach1), a competitor of Nrf2 for ARE sites with predominant repressor function, were higher, and Bach1 also bound to a greater relative extent to the examined ARE sites when compared to Nrf2. The negative influence of AMPK on Bach1 was confirmed by pharmacological and genetic approaches and occurred at the level of mRNA synthesis. Overall, the observed AMPK-mediated boost in transactivation of a subset of Nrf2 target genes involves downregulation of Bach1 and subsequent favored binding of activating Nrf2 over repressing Bach1 to the examined ARE sites.
Collapse
Affiliation(s)
| | - Manuel Matzinger
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
11
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
12
|
Hillson O, Gonzalez S, Rallis C. Prospects of Pharmacological Interventions to Organismal Aging. Biomol Concepts 2018; 9:200-215. [DOI: 10.1515/bmc-2018-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
AbstractIntense research in the areas of cellular and organismal aging using diverse laboratory model systems has enriched our knowledge in the processes and the signalling pathways involved in normal and pathological conditions. The field finds itself in a position to take decisive steps towards clinical applications and interventions not only for targeted age-related diseases such as cardiovascular conditions and neurodegeneration but also for the modulation of health span and lifespan of a whole organism. Beyond nutritional interventions such as dietary restriction without malnutrition and various regimes of intermittent fasting, accumulating evidence provides promise for pharmacological interventions. The latter, mimic caloric or dietary restriction, tune cellular and organismal stress responses, affect the metabolism of microbiome with subsequent effects on the host or modulate repair pathways, among others. In this mini review, we summarise some of the evidence on drugs that can alter organismal lifespan and the prospects they might offer for promoting healthspan and delaying age-related diseases.
Collapse
Affiliation(s)
- Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| |
Collapse
|
13
|
Azmoonfar R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Yahyapour R, Farhood B, Nouruzi F, Khodamoradi E, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Pneumonitis and Fibrosis and Attenuates Upregulation of Dual Oxidase Genes Expression. Adv Pharm Bull 2018; 8:697-704. [PMID: 30607342 PMCID: PMC6311649 DOI: 10.15171/apb.2018.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: Lung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and late side effects of exposure to IR can limit the radiation doses delivered to tumors that are within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of radiotherapy for this organ. IL-4 and IL-13 have a key role in the development of pneumonitis and fibrosis. Metformin is a potent anti-fibrosis and redox modulatory agent that has shown radioprotective effects. In this study, we aimed to evaluate possible upregulation of these cytokines and subsequent cascades such as IL4-R1, IL-13R1, Dual oxidase 1 (DUOX1) and DUOX2. In addition, we examined the potential protective effect of metformin in these cytokines and genes, as well as histopathological changes in rat’s lung tissues. Methods: 20 rats were divided into 4 groups: control; metformin treated; radiation + metformin; and radiation. Irradiation was performed with a 60Co source delivering 15 Gray (Gy) to the chest area. After 10 weeks, rats were sacrificed and their lung tissues were removed for histopathological, real-time PCR and ELISA assays. Results: Irradiation of lung was associated with an increase in IL-4 cytokine level, as well as the expression of IL-4 receptor-a1 (IL4ra1) and DUOX2 genes. However, there was no change in the level of IL-13 and its downstream gene including IL-13 receptor-a2 (IL13ra2). Moreover, histopathological evaluations showed significant infiltration of lymphocytes and macrophages, fibrosis, as well as vascular and alveolar damages. Treatment with metformin caused suppression of upregulated genes and IL-4 cytokine level, associated with amelioration of pathological changes. Conclusion: Results of this study showed remarkable pathological damages, an increase in the levels of IL-4, IL4Ra1 and Duox2, while that of IL-13 decreased. Treatment with metformin showed ability to attenuate upregulation of IL-4–DUOX2 pathway and other pathological damages to the lung after exposure to a high dose of IR.
Collapse
Affiliation(s)
- Rasoul Azmoonfar
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Clinical and Anatomical Pathologist at Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|