1
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Danos N, Patrick M, Barretto J, Bilotta F, Lee M. Effects of pregnancy and lactation on muscle-tendon morphology. J Anat 2023; 243:860-869. [PMID: 37350269 PMCID: PMC10557392 DOI: 10.1111/joa.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Pregnancy and lactation hormones have been shown to mediate anatomical changes to the musculoskeletal system that generates animal movement. In this study, we characterize changes in the medial gastrocnemius muscle, its tendon and aponeuroses that are likely to have an effect on whole animal movement and energy expenditure, using the rat model system, Rattus norvegicus. We quantified muscle architecture (mass, cross-sectional area, and pennation angle), muscle fiber type and diameter, and Young's modulus of stiffness for the medial gastrocnemius aponeuroses as well as its contribution to Achilles tendon in three groups of three-month-old female rats: virgin, primiparous pregnant, and primiparous lactating animals. We found that muscle mass drops by 23% during lactation but does not change during pregnancy. We also found that during pregnancy muscle fibers switch from Type I to IIa and during lactation from Type IIb to Type I. The stiffness of connective tissues that has a demonstrated role in locomotion, the aponeurosis and tendon, also changed. Pregnant animals had a significantly less stiff aponeurosis. However, tendon stiffness was most affected during lactation, with a significant drop in stiffness and interindividual variation. We propose that the energetic demands of locomotion may have driven the evolution of these anatomical changes in muscle-tendon units during pregnancy and lactation to ensure more energy can be allocated to fetal development and lactation.
Collapse
Affiliation(s)
- Nicole Danos
- Biology DepartmentUniversity of San DiegoSan DiegoCaliforniaUSA
| | | | - Jacob Barretto
- Biology DepartmentUniversity of San DiegoSan DiegoCaliforniaUSA
| | | | - Megan Lee
- Biology DepartmentUniversity of San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
3
|
Petro JL, Fragozo-Ramos MC, Milán AF, Aristizabal JC, Gallo-Villegas JA, Calderón JC. Serum Levels of Myonectin Are Lower in Adults with Metabolic Syndrome and Are Negatively Correlated with Android Fat Mass. Int J Mol Sci 2023; 24:ijms24086874. [PMID: 37108038 PMCID: PMC10138930 DOI: 10.3390/ijms24086874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Myonectin has shown beneficial effects on lipid regulation in murine models; therefore, it may have implications in the pathophysiology of metabolic syndrome (MS). We evaluated the relationship between serum myonectin and serum lipids, global and regional fat mass, intramuscular lipid content, and insulin resistance (IR) in adults with metabolic risk factors. This was a cross-sectional study in sedentary adults who were diagnosed with MS or without MS (NMS). Serum myonectin was quantified by enzyme-linked immunosorbent assay, lipid profile by conventional techniques, and free fatty acids (FFA) by gas chromatography. Body composition was assessed by dual-energy X-ray absorptiometry and intramuscular lipid content through proton nuclear magnetic resonance spectroscopy in the right vastus lateralis muscle. IR was estimated with the homeostatic model assessment (HOMA-IR). The MS (n = 61) and NMS (n = 29) groups were comparable in age (median (interquartile range): 51.0 (46.0-56.0) vs. 53.0 (45.5-57.5) years, p > 0.05) and sex (70.5% men vs. 72.4% women). MS subjects had lower serum levels of myonectin than NMS subjects (1.08 (0.87-1.35) vs. 1.09 (0.93-4.05) ng·mL-1, p < 0.05). Multiple linear regression models adjusted for age, sex, fat mass index and lean mass index showed that serum myonectin was negatively correlated with the android/gynoid fat mass ratio (R2 = 0.48, p < 0.01), but not with the lipid profile, FFA, intramuscular lipid content or HOMA-IR. In conclusion, serum myonectin is lower in subjects with MS. Myonectin negatively correlates with a component relevant to the pathophysiology of MS, such as the android/gynoid fat mass ratio, but not with other components such as FFA, intramuscular fat or IR.
Collapse
Affiliation(s)
- Jorge L Petro
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
- Research Group in Physical Activity, Sports and Health Sciences-GICAFS, Universidad de Córdoba, Montería 230002, Colombia
| | - María Carolina Fragozo-Ramos
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Andrés F Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Juan C Aristizabal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Jaime A Gallo-Villegas
- Sports Medicine Postgraduate Program, and GRINMADE Research Group, SICOR Center, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
4
|
Epidemiological, mechanistic, and practical bases for assessment of cardiorespiratory fitness and muscle status in adults in healthcare settings. Eur J Appl Physiol 2023; 123:945-964. [PMID: 36683091 PMCID: PMC10119074 DOI: 10.1007/s00421-022-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
Given their importance in predicting clinical outcomes, cardiorespiratory fitness (CRF) and muscle status can be considered new vital signs. However, they are not routinely evaluated in healthcare settings. Here, we present a comprehensive review of the epidemiological, mechanistic, and practical bases of the evaluation of CRF and muscle status in adults in primary healthcare settings. We highlight the importance of CRF and muscle status as predictors of morbidity and mortality, focusing on their association with cardiovascular and metabolic outcomes. Notably, adults in the best quartile of CRF and muscle status have as low as one-fourth the risk of developing some of the most common chronic metabolic and cardiovascular diseases than those in the poorest quartile. The physiological mechanisms that underlie these epidemiological associations are addressed. These mechanisms include the fact that both CRF and muscle status reflect an integrative response to the body function. Indeed, muscle plays an active role in the development of many diseases by regulating the body's metabolic rate and releasing myokines, which modulate metabolic and cardiovascular functions. We also go over the most relevant techniques for assessing peak oxygen uptake as a surrogate of CRF and muscle strength, mass, and quality as surrogates of muscle status in adults. Finally, a clinical case of a middle-aged adult is discussed to integrate and summarize the practical aspects of the information presented throughout. Their clinical importance, the ease with which we can assess CRF and muscle status using affordable techniques, and the availability of reference values, justify their routine evaluation in adults across primary healthcare settings.
Collapse
|
5
|
Aristizabal JC, Montoya E, Sánchez YL, Yepes-Calderón M, Narvaez-Sanchez R, Gallo-Villegas JA, Calderón JC. Effects of Low-Volume, High-Intensity Interval Training Compared with Continuous Training on Regional and Global Body Composition in Adults with Metabolic Syndrome: A post hoc Analysis of a Randomized Clinical Trial. ANNALS OF NUTRITION AND METABOLISM 2021; 77:279-288. [PMID: 34763335 DOI: 10.1159/000518909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of low-volume, high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on body composition in adults with metabolic syndrome (MS). METHODS This is a post hoc analysis of the randomized clinical trial Intraining-MET. Sixty adults (40-60 years old) were randomized to an MICT (n = 31) or HIIT (n = 29) supervised programme 3 days/week for 12 weeks. MICT sessions were conducted for 36 min at 60% of peak oxygen consumption (VO2peak). HIIT sessions included 6 intervals at 90% VO2peak for 1 min, followed by 2 min at 50% VO2peak. Body composition was assessed with dual energy X-ray absorptiometry. RESULTS Body weight did not change from pre- to post-training in either MICT (78.9 ± 15.6 kg; 77.7 ± 16.5 kg, p = 0.280) or HIIT groups (76.3 ± 13.4 kg; 76.3 ± 13.7 kg, p = 0.964). Body fat percentage and fat mass (FM) decreased post-training in the MICT (-0.9%; 95% confidence interval [CI]: -0.27 to -1.47 and -0.7 kg; 95% CI: -0.12 to -1.30) and HIIT groups (-1.0%; 95% CI: -0.32 to -1.68 and -0.8 kg; 95% CI: -0.17 to -1.47). Compared to the HIIT programme, MICT significantly reduced android FM (-0.14 kg; 95% CI: -0.02 to -0.26). Lean mass (LM) increased post-training in MICT (+0.7 kg; 95% CI: 0.01-1.41) and HIIT groups (+0.9 kg; 95% CI: 0.12-1.64), but only HIIT increased the trunk LM (+0.6 kg; 95% CI: 0.06-1.20). CONCLUSIONS Both MICT and HIIT reduced FM without changing body weight in adults with MS. MICT had additional benefits by reducing the android FM, whereas HIIT seemed to increase LM. Given the characteristics of the post hoc analysis, further research is required to confirm these results.
Collapse
Affiliation(s)
- Juan Carlos Aristizabal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia.,School of Nutrition and Dietetics, University of Antioquia, Medellín, Colombia
| | - Esperanza Montoya
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia.,Sports Medicine Postgraduate Program, and GRINMADE Research Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Yeliana L Sánchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Manuela Yepes-Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jaime A Gallo-Villegas
- Sports Medicine Postgraduate Program, and GRINMADE Research Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia.,SICOR Center, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Efficacy of high-intensity interval- or continuous aerobic-training on insulin resistance and muscle function in adults with metabolic syndrome: a clinical trial. Eur J Appl Physiol 2021; 122:331-344. [PMID: 34687360 DOI: 10.1007/s00421-021-04835-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE We carried out a randomized, clinical trial in adults of both sexes with metabolic syndrome (MS) to assess the efficacy of high-intensity, low-volume interval training (HIIT) compared to moderate-intensity continuous training (MICT) on insulin resistance (IR), muscle mass, muscle activation, and serum musclin. METHODS Fasting glycemia, insulinemia, and glycated haemoglobin were determined by conventional methods, IR by Homeostatic model assessment (HOMA), lean mass by Dual-Energy X-ray Absorptiometry, muscle activation through carnosine by Proton Magnetic Resonance Spectroscopy, and musclin by Enzyme-Linked ImmunoSorbent Assay before and after a supervised, three-times/week, 12-week treadmill programme. HIIT (n = 29) consisted of six intervals with one-minute, high-intensity phases at 90% of peak oxygen consumption (VO2peak). MICT (n = 31) trained at 60% of VO2peak for 30 min. RESULTS Patients had a mean age of 50.8 ± 6.0 years, body mass index of 30.6 ± 4.0 kg/m2, and VO2peak of 29.0 ± 6.3 mL.kg-1.min-1. Compared to MICT, HIIT was not superior at reducing Ln HOMA-IR (adjusted mean difference: 0.083 [95%CI - 0.092 to 0.257]), carnosine or musclin or at increasing thigh lean mass. HIIT increased carnosine by 0.66 mmol/kg.ww (95% CI 0.08-1.24) after intervention. Both interventions reduced IR, body fat percentage and increased total lean mass/height2 and VO2peak. Musclin showed a non-significant reduction with a small effect size after both interventions. CONCLUSION Compared to MICT, HIIT is not superior at reducing IR, carnosine or musclin or at increasing skeletal muscle mass in adults with MS. Both training types improved IR, muscle mass and body composition. NCT03087721, March 22nd, 2017. TRIAL REGISTRATION NUMBER NCT03087721. Registered March 22nd, 2017.
Collapse
|
7
|
Sánchez YL, Yepes-Calderón M, Valbuena L, Milán AF, Trillos-Almanza MC, Granados S, Peña M, Estrada-Castrillón M, Aristizábal JC, Narvez-Sanchez R, Gallo-Villegas J, Calderón JC. Musclin Is Related to Insulin Resistance and Body Composition, but Not to Body Mass Index or Cardiorespiratory Capacity in Adults. Endocrinol Metab (Seoul) 2021; 36:1055-1068. [PMID: 34674511 PMCID: PMC8566119 DOI: 10.3803/enm.2021.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We studied whether musclin function in humans is related to glycemic control, body composition, and cardiorespiratory capacity. METHODS A cross-sectional study was performed in sedentary adults with or without metabolic syndrome (MS). Serum musclin was measured by enzyme-linked immunosorbent assay. Insulin resistance (IR) was evaluated by the homeostatic model assessment (HOMA-IR). Body composition was determined by dual-energy X-ray absorptiometry and muscle composition by measuring carnosine in the thigh, a surrogate of fiber types, through proton magnetic resonance spectroscopy. Cardiorespiratory capacity was assessed through direct ergospirometry. RESULTS The control (n=29) and MS (n=61) groups were comparable in age (51.5±6.5 years old vs. 50.7±6.1 years old), sex (72.4% vs. 70.5% women), total lean mass (58.5%±7.4% vs. 57.3%±6.8%), and peak oxygen consumption (VO2peak) (31.0±5.8 mL O2./kg.min vs. 29.2±6.3 mL O2/kg.min). Individuals with MS had higher body mass index (BMI) (30.6±4.0 kg/m2 vs. 27.4± 3.6 kg/m2), HOMA-IR (3.5 [95% confidence interval, CI, 2.9 to 4.6] vs. 1.7 [95% CI, 1.1 to 2.0]), and musclin (206.7 pg/mL [95% CI, 122.7 to 387.8] vs. 111.1 pg/mL [95% CI, 63.2 to 218.5]) values than controls (P˂0.05). Musclin showed a significant relationship with HOMA-IR (β=0.23; 95% CI, 0.12 to 0.33; P˂0.01), but not with VO2peak, in multiple linear regression models adjusted for age, sex, fat mass, lean mass, and physical activity. Musclin was significantly associated with insulin, glycemia, visceral fat, and regional muscle mass, but not with BMI, VCO2peak, maximum heart rate, maximum time of work, or carnosine. CONCLUSION In humans, musclin positively correlates with insulinemia, IR, and a body composition profile with high visceral adiposity and lean mass, but low body fat percentage. Musclin is not related to BMI or cardiorespiratory capacity.
Collapse
Affiliation(s)
- Yeliana L. Sánchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Manuela Yepes-Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Luis Valbuena
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Indeportes Antioquia, Medellin,
Colombia
| | - Andrés F. Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - María C. Trillos-Almanza
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Sergio Granados
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Miguel Peña
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | | | - Juan C. Aristizábal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Raúl Narvez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Jaime Gallo-Villegas
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Sports Medicine Postgraduate Program, and GRINMADE Research Group, SICOR Center, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| |
Collapse
|
8
|
Parrettini S, Caroli A, Torlone E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front Endocrinol (Lausanne) 2020; 11:611929. [PMID: 33424775 PMCID: PMC7793966 DOI: 10.3389/fendo.2020.611929] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy offers a window of opportunity to program the future health of both mothers and offspring. During gestation, women experience a series of physical and metabolic modifications and adaptations, which aim to protect the fetus development and are closely related to both pre-gestational nutritional status and gestational weight gain. Moreover, pre-gestational obesity represents a challenge of treatment, and nowadays there are new evidence as regard its management, especially the adequate weight gain. Recent evidence has highlighted the determinant role of nutritional status and maternal diet on both pregnancy outcomes and long-term risk of chronic diseases, through a transgenerational flow, conceptualized by the Development Origin of Health and Diseases (Dohad) theory. In this review we will analyse the physiological and endocrine adaptation in pregnancy, and the metabolic complications, thus the focal points for nutritional and therapeutic strategies that we must early implement, virtually before conception, to safeguard the health of both mother and progeny. We will summarize the current nutritional recommendations and the use of nutraceuticals in pregnancy, with a focus on the management of pregnancy complicated by obesity and hyperglycemia, assessing the most recent evidence about the effects of ante-natal nutrition on the long-term, on either maternal health or metabolic risk of the offspring.
Collapse
Affiliation(s)
- Sara Parrettini
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonella Caroli
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Torlone
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
| |
Collapse
|