1
|
Pandey VK, Tripathi A, Srivastava S, Pandey S, Dar AH, Singh R, Duraisamy P, Singh P, Mukarram SA. A systematic review on immunity functionalities and nutritional food recommendations to develop immunity against viral infection. APPLIED FOOD RESEARCH 2023; 3:100291. [DOI: 10.1016/j.afres.2023.100291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Bhattacharya M, Chatterjee S, Sharma AR, Lee SS, Chakraborty C. Delta variant (B.1.617.2) of SARS-CoV-2: current understanding of infection, transmission, immune escape, and mutational landscape. Folia Microbiol (Praha) 2023; 68:17-28. [PMID: 35962276 PMCID: PMC9374302 DOI: 10.1007/s12223-022-01001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022]
Abstract
The Delta variant is one of the alarming variants of the SARS-CoV-2 virus that have been immensely detrimental and a significant cause of the prolonged pandemic (B.1.617.2). During the SARS-CoV-2 pandemic from December 2020 to October 2021, the Delta variant showed global dominance, and afterwards, the Omicron variant showed global dominance. Delta shows high infectivity rate which accounted for nearly 70% of the cases after December 2020. This review discusses the additional attributes that make the Delta variant so infectious and transmissible. The study also focuses on the significant mutations, namely the L452R and T478K present on the receptor-binding domain of spike (S)-glycoprotein, which confers specific alterations to the Delta variant. Considerably, we have also highlighted other notable factors such as the immune escape, infectivity and re-infectivity, vaccine escape, Ro number, S-glycoprotein stability, cleavage pattern, and its binding affinity with the host cell receptor protein. We have also emphasized clinical manifestations, symptomatology, morbidity, and mortality for the Delta variant compared with other significant SARS-CoV-2 variants. This review will help the researchers to get an elucidative view of the Delta variant to adopt some practical strategies to minimize the escalating spread of the SARS-CoV-2 Delta variant.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore-756020, Odisha, India
| | - Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
3
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Dobosh B, Zandi K, Giraldo DM, Goh SL, Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, Bhasin M, Ghosn E, Sukhatme V, Schinazi RF, Tirouvanziam R. Baricitinib attenuates the proinflammatory phase of COVID-19 driven by lung-infiltrating monocytes. Cell Rep 2022; 39:110945. [PMID: 35688145 PMCID: PMC9130711 DOI: 10.1016/j.celrep.2022.110945] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2-infected subjects are generally asymptomatic during initial viral replication but may suffer severe immunopathology after the virus has receded and monocytes have infiltrated the airways. In bronchoalveolar lavage fluid from severe COVID-19 patients, monocytes express mRNA encoding inflammatory mediators and contain SARS-CoV-2 transcripts. We leverage a human small airway model of infection and inflammation, whereby primary blood monocytes transmigrate across SARS-CoV-2-infected lung epithelium to characterize viral burden, gene expression, and inflammatory mediator secretion by epithelial cells and monocytes. In this model, lung-infiltrating monocytes acquire SARS-CoV-2 from the epithelium and upregulate expression and secretion of inflammatory mediators, mirroring in vivo data. Combined use of baricitinib (Janus kinase inhibitor) and remdesivir (nucleoside analog) enhances antiviral signaling and viral clearance by SARS-CoV-2-positive monocytes while decreasing secretion of proneutrophilic mediators associated with acute respiratory distress syndrome. These findings highlight the role of lung-infiltrating monocytes in COVID-19 pathogenesis and their importance as a therapeutic target.
Collapse
Affiliation(s)
- Brian Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Diego Moncada Giraldo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Shu Ling Goh
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn Musall
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milagros Aldeco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Julia LeCher
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Vincent D Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Junkai Yang
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Devon J Eddins
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics and Department of Biomedical Bioinformatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eliver Ghosn
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vikas Sukhatme
- Department of Medicine and the Morningside Center for Innovative and Affordable Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
5
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
6
|
Lee J, Cho K, Kook H, Kang S, Lee Y, Lee J. The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens. Int J Biol Sci 2022; 18:617-636. [PMID: 35002513 PMCID: PMC8741860 DOI: 10.7150/ijbs.67203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Among numerous studies on coronavirus 2019 (COVID-19), we noted that the infection and mortality rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) increased with age and that fetuses known to be particularly susceptible to infection were better protected despite various mutations. Hence, we established the hypothesis that a new immune system exists that forms before birth and decreases with aging. Methods: To prove this hypothesis, we established new ex-vivo culture conditions simulating the critical environmental factors of fetal stem cells (FSCs) in early pregnancy. Then, we analyzed the components from FSCs cultivated newly developed ex-vivo culture conditions and compared them from FSCs cultured in a normal condition. Results: We demonstrated that immunoglobulin M (IgM), a natural antibody (NAb) produced only in early B-1 cells, immunoglobulins (Igs) including IgG3, which has a wide range of antigen-binding capacity and affinity, complement proteins, and antiviral proteins are induced in FSCs only cultured in newly developed ex-vivo culture conditions. Particularly we confirmed that their extracellular vesicles (EVs) contained NAbs, Igs, various complement proteins, and antiviral proteins, as well as human leukocyte antigen G (HLA-G), responsible for immune tolerance. Conclusion: Our results suggest that FSCs in early pregnancy can form an independent immune system responding to unlearned antigens as a self-defense mechanism before establishing mature immune systems. Moreover, we propose the possibility of new solutions to cope with various infectious diseases based on the factors in NAbs-containing EVs, especially not causing unnecessary immune reaction due to HLA-G.
Collapse
Affiliation(s)
- Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Yunsung Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Jiwon Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| |
Collapse
|
7
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Bose P, Sunita P, Pattanayak SP. Molecular Insights into the Crosstalk Between Immune Inflammation Nexus and SARS-CoV-2 Virus. Curr Microbiol 2021; 78:3813-3828. [PMID: 34550435 PMCID: PMC8456397 DOI: 10.1007/s00284-021-02657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, a type of viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 has challenged the world as global pandemic. It has marked the identification of third generation of extremely pathogenic zoonotic coronaviruses of twenty-first century posing threat to humans and mainly targeting the lower respiratory tract. In this review, we focused on not only the structure and virology of SARS-COV-2 but have discussed in detail the molecular immunopathogenesis of this novel virus highlighting its interaction with immune system and the role of compromised or dysregulated immune response towards disease severity. We attempted to correlate the crosstalk between unregulated inflammatory outcomes with disrupted host immunity which may play a potential role towards fatal acute respiratory distress syndrome that claims to be life-threatening in COVID-19. Exploration and investigation of molecular host-virus interactions will provide a better understanding on the mechanism of fatal COVID-19 infection and also enlighten the escape routes from the same.
Collapse
Affiliation(s)
- Pritha Bose
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyashree Sunita
- Government Pharmacy Institute, Govt. of Jharkhand, Bariatu, Ranchi, Jharkhand, 834009, India
| | - Shakti P Pattanayak
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Govt. of India, Gaya, 824236, India.
| |
Collapse
|
9
|
Abstract
Children are a unique subset of patients in relation to the COVID-19 pandemic, often presenting asymptomatically, mildly, or atypically. Manifestations of the skin may be a primary (or the only) presenting sign. Recognizing cutaneous manifestations of COVID-19 in the pediatric population is important to guiding precautions, testing, and management for patients and close contacts. Whereas some dermatologic signs in children overlap with those in adults, other skin findings are reported with higher frequency in children and may be clues to multisystemic sequelae. This article describes presentation, pathophysiologic theories, and management strategies for cutaneous manifestations of COVID-19 in children.
Collapse
Affiliation(s)
- Holly Neale
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA; University of Massachusetts Medical School, Worcester, MA, USA
| | - Elena B Hawryluk
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Farmani AR, Mahdavinezhad F, Scagnolari C, Kouhestani M, Mohammadi S, Ai J, Shoormeij MH, Rezaei N. An overview on tumor treating fields (TTFields) technology as a new potential subsidiary biophysical treatment for COVID-19. Drug Deliv Transl Res 2021; 12:1605-1615. [PMID: 34542840 PMCID: PMC8451390 DOI: 10.1007/s13346-021-01067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Affiliated to Istituto Pasteur Italia, Viale Di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Mohammadi
- Department of Plastic Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
11
|
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Fuchs SY, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. J Virol 2021; 95:e0086221. [PMID: 34260266 PMCID: PMC8428404 DOI: 10.1128/jvi.00862-21] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Brianna J. Close
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Raghuveera K. Goel
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA
| | - Benjamin Blum
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA
| | - Alexander H. Tavares
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Devin Kenney
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hasahn L. Conway
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Vipul C. Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA
- Institute of Medical Engineering and Sciences, MA Institute of Technology, Cambridge, Massachusetts, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John H. Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Abstract
Since SARS-CoV-2 first appeared in humans, the scientific community has tried to gather as much information as possible in order to find effective strategies for the containment and treatment this pandemic coronavirus. We reviewed the current published literature on SARS-CoV-2 with an emphasis on the distribution of SARS-CoV-2 in tissues and body fluids, as well as data on the expression of its input receptors on the cell surface. COVID-19 affects many organ systems in many ways. These varied manifestations are associated with viral tropism and immune responses of the infected person, but the exact mechanisms are not yet fully understood. We emphasize the broad organotropism of SARS-CoV-2, as many studies have identified viral components (RNA, proteins) in many organs, including immune cells, pharynx, trachea, lungs, blood, heart, blood vessels, intestines, brain, kidneys, and male reproductive organs. Viral components are present in various body fluids, such as mucus, saliva, urine, cerebrospinal fluid, semen and breast milk. The main SARS-CoV-2 receptor, ACE2, is expressed at different levels in many tissues throughout the human body, but its expression levels do not always correspond to the detection of SARS-CoV-2, indicating a complex interaction between the virus and humans. We also highlight the role of the renin-angiotensin aldosterone system and its inhibitors in the context of COVID-19. In addition, SARS-CoV-2 has various strategies that are widely used in various tissues to evade innate antiviral immunity. Targeting immune evasion mediators of the virus can block its replication in COVID-19 patients. Together, these data shed light on the current understanding of the pathogenesis of SARS-CoV-2 and lay the groundwork for better diagnosis and treatment of patients with COVID-19.
Collapse
|
13
|
Sitanggang PA, Tini K, Susilawathi NM, Wijayanti IAS, Dewi PU, Samatra DPGP. Case reports of cerebral sinus venous thrombosis in COVID-19 patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:83. [PMID: 34220192 PMCID: PMC8240434 DOI: 10.1186/s41983-021-00335-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) pandemic has started in December 2019 and still ongoing. The disease has been expanding rapidly with a high variety of phenotypes from asymptomatic, mild respiratory tract infection, multiple organ system dysfunction, and death. Neurological manifestations also appear in patients with COVID-19, such as headache, seizures, a decrease of consciousness, and paralysis. The hypercoagulable state in patients with COVID-19 is associated with the thromboembolic incident including ischemic strokes, venous thromboembolism, pulmonary artery embolism, and many further. Cerebral sinus venous thrombosis (CSVT) is a rare neurovascular emergency that is often found in critically ill patients. We report two cases of CSVT with different onsets, neurologic manifestations, and prognoses. Case presentation Two cases of cerebral sinus venous thrombosis in COVID-19 patients were reported, following respiratory, hematology, and coagulation disarrangements, which was triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The first patient, which was presented with a seizure, had hypertension and diabetes mellitus as comorbidities. The latter case had no comorbidity but showed more severe presentations of COVID-19 such as brain and lung thrombosis, although already had several days of intravenous anticoagulant administrations. These two cases also have a different course of disease and outcomes, which were interesting topics to study. Conclusions CSVT is one of the neurological complications of the COVID-19 when the brainstem venous drainage is involved. Despite successful alteration to the negative result of SARS-CoV-2 through the rt-PCR test, thrombogenesis and coagulation cascade continuing. Therefore, a high level of neutrophil to lymphocyte ratio (NLR), D-dimer, fibrinogen, and C-reactive protein (CRP) are paramount indicators of poor prognosis.
Collapse
Affiliation(s)
- Prysta Aderlia Sitanggang
- Departement of Neurology, Udayana University, Sanglah General Hospital, Jalan Kesehatan No.1, Denpasar, Bali Indonesia
| | - Kumara Tini
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Hospital, Jalan Rumah Sakit Universitas Udayana No.1, Jimbaran, South Kuta, Bali Badung, Indonesia
| | - Ni Made Susilawathi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Hospital, Jalan Rumah Sakit Universitas Udayana No.1, Jimbaran, South Kuta, Bali Badung, Indonesia
| | - Ida Ayu Sri Wijayanti
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Hospital, Jalan Rumah Sakit Universitas Udayana No.1, Jimbaran, South Kuta, Bali Badung, Indonesia
| | - Putu Utami Dewi
- Department of Radiology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Hospital, Jalan Rumah Sakit Universitas Udayana No.1, Jimbaran, South Kuta, Badung, Bali Indonesia
| | - Dewa Putu Gde Purwa Samatra
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Hospital, Jalan Rumah Sakit Universitas Udayana No.1, Jimbaran, South Kuta, Bali Badung, Indonesia
| |
Collapse
|
14
|
Palmer S, Cunniffe N, Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production. J R Soc Interface 2021; 18:20200982. [PMID: 33726544 PMCID: PMC8086881 DOI: 10.1098/rsif.2020.0982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we report that COVID-19 hospitalization rates follow an exponential relationship with age, doubling for every 16 years of age or equivalently increasing by 4.5% per year of life (R2 = 0.98). This mirrors the well-studied exponential decline of both thymus volume and T-cell production, which halve every 16 years. COVID-19 can therefore be added to the list of other diseases with this property, including those caused by methicillin-resistant Staphylococcus aureus, MERS-CoV, West Nile virus, Streptococcus pneumoniae and certain cancers, such as chronic myeloid leukaemia and brain cancers. In addition, the incidence of severe disease and mortality due to COVID-19 are both higher in men, consistent with the degree to which thymic involution (and the decrease in T-cell production with age) is more severe in men compared to women. Since these properties are shared with some non-contagious diseases, we hypothesized that the age dependence does not come from social-mixing patterns, i.e. that the probability of hospitalization given infection rises exponentially, doubling every 16 years. A Bayesian analysis of daily hospitalizations, incorporating contact matrices, found that this relationship holds for every age group except for the under 20s. While older adults have fewer contacts than young adults, our analysis suggests that there is an approximate cancellation between the effects of fewer contacts for the elderly and higher infectiousness due to a higher probability of developing severe disease. Our model fitting suggests under 20s have 49-75% additional immune protection beyond that predicted by strong thymus function alone, consistent with increased juvenile cross-immunity from other viruses. We found no evidence for differences between age groups in susceptibility to infection or infectiousness to others (given disease state), i.e. the only important factor in the age dependence of hospitalization rates is the probability of hospitalization given infection. These findings suggest the existence of a T-cell exhaustion threshold, proportional to thymic output and that clonal expansion of peripheral T-cells does not affect disease risk. The strikingly simple inverse relationship between risk and thymic T-cell output adds to the evidence that thymic involution is an important factor in the decline of the immune system with age and may also be an important clue in understanding disease progression, not just for COVID-19 but other diseases as well.
Collapse
Affiliation(s)
- Sam Palmer
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
EGCG, a Green Tea Catechin, as a Potential Therapeutic Agent for Symptomatic and Asymptomatic SARS-CoV-2 Infection. Molecules 2021; 26:molecules26051200. [PMID: 33668085 PMCID: PMC7956763 DOI: 10.3390/molecules26051200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged to be the greatest threat to humanity in the modern world and has claimed nearly 2.2 million lives worldwide. The United States alone accounts for more than one fourth of 100 million COVID-19 cases across the globe. Although vaccination against SARS-CoV-2 has begun, its efficacy in preventing a new or repeat COVID-19 infection in immunized individuals is yet to be determined. Calls for repurposing of existing, approved, drugs that target the inflammatory condition in COVID-19 are growing. Our initial gene ontology analysis predicts a similarity between SARS-CoV-2 induced inflammatory and immune dysregulation and the pathophysiology of rheumatoid arthritis. Interestingly, many of the drugs related to rheumatoid arthritis have been found to be lifesaving and contribute to lower COVID-19 morbidity. We also performed in silico investigation of binding of epigallocatechin gallate (EGCG), a well-known catechin, and other catechins on viral proteins and identified papain-like protease protein (PLPro) as a binding partner. Catechins bind to the S1 ubiquitin-binding site of PLPro, which might inhibit its protease function and abrogate SARS-CoV-2 inhibitory function on ubiquitin proteasome system and interferon stimulated gene system. In the realms of addressing inflammation and how to effectively target SARS-CoV-2 mediated respiratory distress syndrome, we review in this article the available knowledge on the strategic placement of EGCG in curbing inflammatory signals and how it may serve as a broad spectrum therapeutic in asymptomatic and symptomatic COVID-19 patients.
Collapse
|
16
|
Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol 2020; 90:107225. [PMID: 33302033 PMCID: PMC7691139 DOI: 10.1016/j.intimp.2020.107225] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 caused by the SARS-CoV-2 virus, accompanies an unprecedented spike in cytokines levels termed cytokines release syndrome (CRS), in critically ill patients. Clinicians claim that the surge demonstrates a deregulated immune defence in host, as infected cell expression analysis depicts a delay in type-I (interferon-I) and type-III IFNs expression, along with a limited Interferon-Stimulated Gene (ISG) response, which later resume and culminates in elicitation of several cytokines including- IL-6, IL-8, IL-12, TNFα, IL-17, MCP-1, IP-10 and IL-10 etc. Although cytokines are messenger molecules of the immune system, but their increased concentration results in inflammation, infiltration of macrophages, neutrophils and lung injury in patients. This inflammatory response results in the precarious pathogenesis of COVID-19; thus, a complete estimation of the immune response against SARS-CoV-2 is vital in designing a harmless and effective vaccine. In pathogenesis analysis, it emerges that a timely forceful type-I IFN production (18-24hrs post infection) promotes innate and acquired immune responses, while a delay in IFNs production (3-4 days post infection) actually renders both innate and acquired responses ineffective in fighting infection. Further, underlying conditions including hypertension, obesity, cardio-vascular disease etc may increase the chances of putting people in risk groups, which end up having critical form of infection. This review summarizes the events starting from viral entry, its struggle with the immune system and failure of host immunological parameters to obliterate the infections, which finally culminate into massive release of CRS and inflammation in gravely ill patients.
Collapse
Affiliation(s)
- Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mohammad Naime
- Central Research Institute of Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Kapell S, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140044 DOI: 10.1101/2020.10.27.358259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.
Collapse
|
18
|
Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol 2020; 11:580641. [PMID: 33101306 PMCID: PMC7554241 DOI: 10.3389/fimmu.2020.580641] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing outbreak of Coronavirus disease 2019 infection achieved pandemic status on March 11, 2020. As of September 8, 2020 it has caused over 890,000 mortalities world-wide. Coronaviral infections are enabled by potent immunoevasory mechanisms that target multiple aspects of innate immunity, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) able to induce a cytokine storm, impair interferon responses, and suppress antigen presentation on both MHC class I and class II. Understanding the immune responses to SARS-CoV-2 and its immunoevasion approaches will improve our understanding of pathogenesis, virus clearance, and contribute toward vaccine and immunotherepeutic design and evaluation. This review discusses the known host innate immune response and immune evasion mechanisms driving SARS-CoV-2 infection and pathophysiology.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|