1
|
Pang Z, Tang A, He Y, Fan J, Yang Q, Tong Y, Fan H. Neurological complications caused by SARS-CoV-2. Clin Microbiol Rev 2024; 37:e0013124. [PMID: 39291997 PMCID: PMC11629622 DOI: 10.1128/cmr.00131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
SUMMARYSARS-CoV-2 can not only cause respiratory symptoms but also lead to neurological complications. Research has shown that more than 30% of SARS-CoV-2 patients present neurologic symptoms during COVID-19 (A. Pezzini and A. Padovani, Nat Rev Neurol 16:636-644, 2020, https://doi.org/10.1038/s41582-020-0398-3). Increasing evidence suggests that SARS-CoV-2 can invade both the central nervous system (CNS) (M.S. Xydakis, M.W. Albers, E.H. Holbrook, et al. Lancet Neurol 20: 753-761, 2021 https://doi.org/10.1016/S1474-4422(21)00182-4 ) and the peripheral nervous system (PNS) (M.N. Soares, M. Eggelbusch, E. Naddaf, et al. J Cachexia Sarcopenia Muscle 13:11-22, 2022, https://doi.org/10.1002/jcsm.12896), resulting in a variety of neurological disorders. This review summarized the CNS complications caused by SARS-CoV-2 infection, including encephalopathy, neurodegenerative diseases, and delirium. Additionally, some PNS disorders such as skeletal muscle damage and inflammation, anosmia, smell or taste impairment, myasthenia gravis, Guillain-Barré syndrome, ICU-acquired weakness, and post-acute sequelae of COVID-19 were described. Furthermore, the mechanisms underlying SARS-CoV-2-induced neurological disorders were also discussed, including entering the brain through retrograde neuronal or hematogenous routes, disrupting the normal function of the CNS through cytokine storms, inducing cerebral ischemia or hypoxia, thus leading to neurological complications. Moreover, an overview of long-COVID-19 symptoms is provided, along with some recommendations for care and therapeutic approaches of COVID-19 patients experiencing neurological complications.
Collapse
Affiliation(s)
- Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ao Tang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yujie He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingmao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Zhao J, Xia F, Jiao X, Lyu X. Long COVID and its association with neurodegenerative diseases: pathogenesis, neuroimaging, and treatment. Front Neurol 2024; 15:1367974. [PMID: 38638307 PMCID: PMC11024438 DOI: 10.3389/fneur.2024.1367974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 04/20/2024] Open
Abstract
Corona Virus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has presented unprecedented challenges to the world. Changes after acute COVID-19 have had a significant impact on patients with neurodegenerative diseases. This study aims to explore the mechanism of neurodegenerative diseases by examining the main pathways of central nervous system infection of SARS-CoV-2. Research has indicated that chronic inflammation and abnormal immune response are the primary factors leading to neuronal damage and long-term consequences of COVID-19. In some COVID-19 patients, the concurrent inflammatory response leads to increased release of pro-inflammatory cytokines, which may significantly impact the prognosis. Molecular imaging can accurately assess the severity of neurodegenerative diseases in patients with COVID-19 after the acute phase. Furthermore, the use of FDG-PET is advocated to quantify the relationship between neuroinflammation and psychiatric and cognitive symptoms in patients who have recovered from COVID-19. Future development should focus on aggressive post-infection control of inflammation and the development of targeted therapies that target ACE2 receptors, ERK1/2, and Ca2+.
Collapse
Affiliation(s)
- Jinyang Zhao
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fan Xia
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xue Jiao
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Mishra M, Singh SK, Kaushalendra, Kumar A. Natural prebiotics and probiotics in use as an alternative to antiviral drugs against the pandemic COVID-19. MICROBIAL BIOMOLECULES 2023:489-501. [DOI: 10.1016/b978-0-323-99476-7.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
5
|
Alibeik N, Pishgar E, Bozorgmehr R, Aghaaliakbari F, Rahimian N. Potential role of gut microbiota in patients with COVID-19, its relationship with lung axis, central nervous system (CNS) axis, and improvement with probiotic therapy. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:1-9. [PMID: 35611351 PMCID: PMC9085538 DOI: 10.18502/ijm.v14i1.8794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a new corona virus. COVID-19 affects different people in different ways. COVID-19 could affect the gastrointestinal system via gut microbiota impairment. Gut microbiota could affect lung health through a relationship between gut and lung microbiota, which is named gut-lung axis. Gut microbiota impairment plays a role in pathogenesis of various pulmonary disease states, so GI diseases were found to be associated with respiratory diseases. Moreover, most infected people will develop mild to moderate gastrointestinal (GI) symptoms such as diarrhea, vomiting, and stomachache, which is caused by impairment in gut microbiota. Therefore, the current study aimed to review potential role of gut microbiota in patients with COVID-19, its relation with lung axis, Central Nervous System (CNS) axis and improvement with probiotic therapy. Also, this review can be a guide for potential role of gut microbiota in patients with COVID-19.
Collapse
Affiliation(s)
- Nazanin Alibeik
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Pishgar
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Bozorgmehr
- Department of Surgery, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Farshad Aghaaliakbari
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
6
|
Manosso LM, Arent CO, Borba LA, Ceretta LB, Quevedo J, Réus GZ. Microbiota-Gut-Brain Communication in the SARS-CoV-2 Infection. Cells 2021; 10:1993. [PMID: 34440767 PMCID: PMC8391332 DOI: 10.3390/cells10081993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 2 (SARS-CoV-2). In addition to pneumonia, individuals affected by the disease have neurological symptoms. Indeed, SARS-CoV-2 has a neuroinvasive capacity. It is known that the infection caused by SARS-CoV-2 leads to a cytokine storm. An exacerbated inflammatory state can lead to the blood-brain barrier (BBB) damage as well as to intestinal dysbiosis. These changes, in turn, are associated with microglial activation and reactivity of astrocytes that can promote the degeneration of neurons and be associated with the development of psychiatric disorders and neurodegenerative diseases. Studies also have been shown that SARS-CoV-2 alters the composition and functional activity of the gut microbiota. The microbiota-gut-brain axis provides a bidirectional homeostatic communication pathway. Thus, this review focuses on studies that show the relationship between inflammation and the gut microbiota-brain axis in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luana M. Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 77054-000, SC, Brazil; (L.M.M.); (C.O.A.); (L.A.B.); (J.Q.)
| | - Camila O. Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 77054-000, SC, Brazil; (L.M.M.); (C.O.A.); (L.A.B.); (J.Q.)
| | - Laura A. Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 77054-000, SC, Brazil; (L.M.M.); (C.O.A.); (L.A.B.); (J.Q.)
| | - Luciane B. Ceretta
- Programa de Pós-Graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil;
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 77054-000, SC, Brazil; (L.M.M.); (C.O.A.); (L.A.B.); (J.Q.)
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma 77054-000, SC, Brazil; (L.M.M.); (C.O.A.); (L.A.B.); (J.Q.)
| |
Collapse
|
7
|
Xu J, Wu Z, Zhang M, Liu S, Zhou L, Yang C, Liu C. The Role of the Gastrointestinal System in Neuroinvasion by SARS-CoV-2. Front Neurosci 2021; 15:694446. [PMID: 34276298 PMCID: PMC8283125 DOI: 10.3389/fnins.2021.694446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most devastating pandemics in history. SARS-CoV-2 has infected more than 100 million people worldwide, leading to more than 3.5 million deaths. Initially, the clinical symptoms of SARS-CoV-2 infection were thought to be restricted to the respiratory system. However, further studies have revealed that SARS-CoV-2 can also afflict multiple other organs, including the gastrointestinal tract and central nervous system. The number of gastrointestinal and neurological manifestations after SARS-CoV-2 infection has been rapidly increasing. Most importantly, patients infected with SARS-CoV-2 often exhibit comorbid symptoms in the gastrointestinal and neurological systems. This review aims to explore the pathophysiological mechanisms of neuroinvasion by SARS-CoV-2. SARS-CoV-2 may affect the nervous system by invading the gastrointestinal system. We hope that this review can provide novel ideas for the clinical treatment of the neurological symptoms of SARS-CoV-2 infection and references for developing prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wang MK, Yue HY, Cai J, Zhai YJ, Peng JH, Hui JF, Hou DY, Li WP, Yang JS. COVID-19 and the digestive system: A comprehensive review. World J Clin Cases 2021; 9:3796-3813. [PMID: 34141737 PMCID: PMC8180220 DOI: 10.12998/wjcc.v9.i16.3796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.
Collapse
Affiliation(s)
- Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Hai-Yan Yue
- Department of Digestive Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jin Cai
- Department of Geriatrics, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
- Department of Infectious Diseases, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Yu-Jia Zhai
- Department of Outpatient Services, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jian-Hui Peng
- Department of Quality Management, Guangdong Second Provincial General Hospital (Pazhou Campus), Guangzhou 510317, Guangdong Province, China
| | - Ju-Fen Hui
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Deng-Yong Hou
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Wei-Peng Li
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
9
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
10
|
Santacroce L, Inchingolo F, Topi S, Del Prete R, Di Cosola M, Charitos IA, Montagnani M. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab Syndr 2021; 15:295-301. [PMID: 33484986 PMCID: PMC7804381 DOI: 10.1016/j.dsx.2020.12.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Probiotics can support the body's systems in fighting viral infections. This review is aimed to focus current knowledge about the use of probiotics as adjuvant therapy for COVID-19 patients. METHODS We performed an extensive research using the PubMed-LitCovid, Cochrane Library, Embase databases, and conducting manual searches on Google Scholar, Elsevier Connect, Web of Science about this issue. RESULTS We have found several papers reporting data about the potential role of probiotics as well as contrasting experimental data about it. CONCLUSIONS Most data show good results demonstrating that probiotics can play a significant role in fighting SARS-CoV-2 infection, also compared with their use in the past for various diseases. They seem effective in lowering inflammatory status, moreover in patients with chronic comorbidities such as cancer and diabetes, improving clinical outcomes.
Collapse
Affiliation(s)
- Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy; Department of Clinical Disciplines, School of Technical Medical Sciences, "A. Xhuvani" University of Elbasan, Rruga Ismail Zyma, 3001, Elbasan, Albania
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Dentistry Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "A. Xhuvani" University of Elbasan, Rruga Ismail Zyma, 3001, Elbasan, Albania
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Viale Luigi Pinto 1, 71122, Foggia, Italy
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Center, Riuniti University Hospital of Foggia, Viale Luigi Pinto 1, 71122, Foggia, Italy.
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology - Section of Pharmacology, Medical School, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|