1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
|
2
|
Blades R, Mendes WB, Don BP, Mayer SE, Dileo R, O'Bryan J, Fromer E, Guan JY, Cheng SS, Mason AE, Prather AA, Epel ES. A randomized controlled clinical trial of a Wim Hof Method intervention in women with high depressive symptoms. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100272. [PMID: 39606690 PMCID: PMC11599992 DOI: 10.1016/j.cpnec.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Stress is a driver of depression, and people with depression often struggle to cope with stress and anxiety. This study directly compares the mental health effects of a Wim Hof Method intervention to an active control condition (slow breathing) in women with high stress and high depressive symptoms. Methods We randomized 84 healthy midlife women with high stress and high depressive symptoms to either: 1) the hormetic stress condition based on the Wim Hof Method (WHM) involving a breathing technique designed to induce intermittent hypoxia and cold showers (n = 41) or 2) an active comparison condition involving slow-paced breathing and warm showers (n = 43). We provided participants with daily audio instructions (15 min) for three weeks during the COVID-19 pandemic (2020-2021). Our primary outcomes were depressive symptoms, anxiety symptoms, and perceived stress collected at pre-intervention, post-intervention, and 3 months later. We also assessed daily stress rumination and affect with daily diary during the intervention, and participants completed a laboratory stressor, the Trier Social Stress Test, before and after the intervention, and provided samples for salivary cortisol reactivity. Results Participants in the active control condition perceived the intervention to be more credible and expected greater mental wellbeing benefits compared to those in the Wim Hof Method condition. Differential attrition was observed with six participants (7 %) dropping out -- all from WHM condition. Among the participants who completed the intervention, both groups improved on mental health outcomes immediately after the intervention with a 24 % reduction in depressive symptoms, a 27 % reduction in anxiety symptoms, and 20 % reduction in perceived stress. Improvements were maintained at the 3-month follow-up with 46 % of the sample reporting mild or no depressive symptoms. Participants in the WHM condition had significant reductions in rumination after daily stressful events compared to those in the active control group. Both conditions had reduced daily negative affect across the intervention and lower peak cortisol reactivity to the lab stressor post-intervention. Conclusions Counter to the preregistered predictions, and despite participants' differing expectations, the interventions led to equivalent reductions in depressive symptoms, anxiety symptoms, and perceived stress, which were sustained at three months. They also produced comparable reductions in cortisol reactivity and daily negative affect. However, the WHM condition was associated with greater reduction in reported rumination after daily stressful events than the active control, a finding that needs replication with larger and more diverse samples.
Collapse
Affiliation(s)
- Robin Blades
- University of California, Los Angeles, Department of Psychology, USA
| | | | - Brian P. Don
- University of Auckland, School of Psychology, New Zealand
| | - Stefanie E. Mayer
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| | - Rebecca Dileo
- University of Michigan, Department of Psychology, USA
| | - Julia O'Bryan
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| | - Elena Fromer
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| | - Joanna Y. Guan
- University of California, Davis, Center for Mind and Brain, USA
| | - Sylvia S. Cheng
- University of California, Berkeley, Division of Epidemiology, USA
| | - Ashley E. Mason
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| | - Aric A. Prather
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| | - Elissa S. Epel
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, USA
| |
Collapse
|
3
|
Arboit F, Pereira GC, Fialho MFP, Becker G, Brum EDS, Pillat MM, Bochi GV, Portela LOC, Zanchet EM. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines 2024; 12:2116. [PMID: 39335629 PMCID: PMC11430548 DOI: 10.3390/biomedicines12092116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Mental disorders pose a significant public health challenge, affecting millions worldwide. Given the limitations of current therapies, many patients experience inadequate responses and adverse effects. Intermittent hypoxia (IH) has demonstrated anxiolytic, antidepressant, and neuroprotective properties in various protocols. This study investigated the effects of acute IH (13% O2, 1 h), fluoxetine (FLX) and their combination on depression-like behavior, serum corticosterone, and inflammatory cytokine levels induced by acute restraint stress in C57BL/6 female mice. Methods: Behavioral assessments included the tail suspension test, forced swim test, and open field test. Results: The combined IH + FLX treatment exhibited a synergistic effect, reducing immobility time and increasing latency time, respectively, in the tail suspension test (46%, p = 0.0014; 73%, p = 0.0033) and forced swim test (56%, p = 0.0082; 48%, p = 0.0322) compared to the ARS group. Biochemical analysis revealed that individual and combined treatments significantly reduced most inflammatory interleukins by up to 96%. Corticosterone levels were reduced by 30% only in the IH group. Conclusions: These findings highlight the potential of a one-hour IH session, particularly when combined with fluoxetine, to alleviate depressive-like behaviors and exert anti-inflammatory effects, suggesting a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Francini Arboit
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Gabriele Cheiran Pereira
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Maria Fernanda Pessano Fialho
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Gabriela Becker
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Evelyne da Silva Brum
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Micheli Mainardi Pillat
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Osório Cruz Portela
- Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Eliane Maria Zanchet
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
4
|
Peng Q, Gilder DA, Bernert RA, Karriker-Jaffe KJ, Ehlers CL. Genetic factors associated with suicidal behaviors and alcohol use disorders in an American Indian population. Mol Psychiatry 2024; 29:902-913. [PMID: 38177348 PMCID: PMC11176067 DOI: 10.1038/s41380-023-02379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
American Indians (AI) demonstrate the highest rates of both suicidal behaviors (SB) and alcohol use disorders (AUD) among all ethnic groups in the US. Rates of suicide and AUD vary substantially between tribal groups and across different geographical regions, underscoring a need to delineate more specific risk and resilience factors. Using data from over 740 AI living within eight contiguous reservations, we assessed genetic risk factors for SB by investigating: (1) possible genetic overlap with AUD, and (2) impacts of rare and low-frequency genomic variants. Suicidal behaviors included lifetime history of suicidal thoughts and acts, including verified suicide deaths, scored using a ranking variable for the SB phenotype (range 0-4). We identified five loci significantly associated with SB and AUD, two of which are intergenic and three intronic on genes AACSP1, ANK1, and FBXO11. Nonsynonymous rare and low-frequency mutations in four genes including SERPINF1 (PEDF), ZNF30, CD34, and SLC5A9, and non-intronic rare and low-frequency mutations in genes OPRD1, HSD17B3 and one lincRNA were significantly associated with SB. One identified pathway related to hypoxia-inducible factor (HIF) regulation, whose 83 nonsynonymous rare and low-frequency variants on 10 genes were significantly linked to SB as well. Four additional genes, and two pathways related to vasopressin-regulated water metabolism and cellular hexose transport, also were strongly associated with SB. This study represents the first investigation of genetic factors for SB in an American Indian population that has high risk for suicide. Our study suggests that bivariate association analysis between comorbid disorders can increase statistical power; and rare and low-frequency variant analysis in a high-risk population enabled by whole-genome sequencing has the potential to identify novel genetic factors. Although such findings may be population specific, rare functional mutations relating to PEDF and HIF regulation align with past reports and suggest a biological mechanism for suicide risk and a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - David A Gilder
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebecca A Bernert
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Xu Y, Li Y, Wang C, Han T, Wu Y, Wang S, Wei J. Clinical value and mechanistic analysis of HIIT on modulating risk and symptoms of depression: A systematic review. Int J Clin Health Psychol 2024; 24:100433. [PMID: 38226005 PMCID: PMC10788816 DOI: 10.1016/j.ijchp.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Background The exact causal mechanisms of depression remain unclear due to the complexity of the triggers, which has led to limitations in treating depression using modern drugs. High-intensity interval training (HIIT) is as effective as medication in treating depression without toxic side effects. Typically, HIIT requires less time commitment (i.e., shorter exercise duration) and exhibits pronounced benefits on depressive symptoms than other forms of physical exercise. This review summarizes the risk reduction and clinical effects of HIIT for depression and discusses the underlying mechanisms, providing a theoretical basis for utilizing HIIT in treating depression. Methods A database search was conducted in PubMed, Embase, Web of Science, and Scopus from inception up to October 2022. The methodological quality of the included literature was evaluated by the physiotherapy evidence database (PEDro) scale criteria. The review focused on evaluating the changes in depression risk or symptoms of HIIT interventions in healthy individuals, patients with depression, and patients with other disorders co-morbid with depression. Consequently, the mechanisms associated with depression related HIIT were summarized. Results A total of 586 participants (52 % female; mean age: 43.58±8.93 years) from 22 studies were included. Implementing HIIT using different exercise types alleviates depressive symptoms in individuals with depression and in individuals with depression who have exhibited comorbidities and reduced depression scale scores in subjects immediately after acute exercise. In addition, the long-interval HIIT and short-interval HIIT in the treatment of patients with cardiovascular or psychiatric disorders may reduce depressive symptoms via complex exercise-related changes on several levels, including by effecting the following measures: releasing monoamines, reducing neuronal death, inducing neurogenesis, modulating the functional homeostasis of the HPA axis, and enhancing the level of inflammation in the body. Conclusion HIIT is a relatively safe and effective antidepressant, which may involve multiple neurobiological mechanisms (release of monoamines, reducing neuronal death, inducing neurogenesis, modulating the functional homeostasis of the HPA axis, and enhancing the level of inflammation in the body), thereby reducing the risk or symptoms of depression in participants.
Collapse
Affiliation(s)
- Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yongjie Li
- Department of rehabilitation medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Changqing Wang
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yue Wu
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Tubi MA, Wheeler K, Matsiyevskiy E, Hapenney M, Mack WJ, Chui HC, King K, Thompson PM, Braskie MN. White matter hyperintensity volume modifies the association between CSF vascular inflammatory biomarkers and regional FDG-PET along the Alzheimer's disease continuum. Neurobiol Aging 2023; 132:1-12. [PMID: 37708739 PMCID: PMC10843575 DOI: 10.1016/j.neurobiolaging.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023]
Abstract
In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Koral Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth Matsiyevskiy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthew Hapenney
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin King
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
7
|
Sharma D, Khan H, Kumar A, Grewal AK, Dua K, Singh TG. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J Neural Transm (Vienna) 2023; 130:1523-1535. [PMID: 37740098 DOI: 10.1007/s00702-023-02698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Hypoxia-inducible factor 1 has been identified as an important therapeutic target in psychiatric illnesses. Hypoxia is a condition in which tissues do not receive enough oxygen, resulting in less oxidative energy production. HIF-1, the master regulator of molecular response to hypoxia, is destabilized when oxygen levels fall. HIF-1, when activated, increases the gene transcription factors that promote adaptive response and longevity in hypoxia. HIF-regulated genes encode proteins involved in cell survival, energy metabolism, angiogenesis, erythropoiesis, and vasomotor control. Multiple genetic and environmental variables contribute to the pathophysiology of psychiatric disease. This review focuses on the most recent findings indicating the role of oxygen deprivation in CNS damage, with strong attention on HIF-mediated pathways. Several pieces of evidence suggested that, in the case of hypoxia, induction and maintenance of HIF-1 target genes may help reduce nerve damage. Major new insights into the molecular mechanisms that control HIF's sensitivity to oxygen are used to make drugs that can change the way HIF works as a therapeutic target for some CNS diseases.
Collapse
Affiliation(s)
- Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
Jeong S, Chokkalla AK, Davis CK, Vemuganti R. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry 2023; 28:4044-4055. [PMID: 37188778 PMCID: PMC10646155 DOI: 10.1038/s41380-023-02099-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic and epitranscriptomic modifications that regulate physiological processes of an organism at the DNA and RNA levels, respectively, are novel therapeutic candidates for various neurological diseases. Gut microbiota and its metabolites are known to modulate DNA methylation and histone modifications (epigenetics), as well as RNA methylation especially N6-methyladenosine (epitranscriptomics). As gut microbiota as well as these modifications are highly dynamic across the lifespan of an organism, they are implicated in the pathogenesis of stroke and depression. The lack of specific therapeutic interventions for managing post-stroke depression emphasizes the need to identify novel molecular targets. This review highlights the interaction between the gut microbiota and epigenetic/epitranscriptomic pathways and their interplay in modulating candidate genes that are involved in post-stroke depression. This review further focuses on the three candidates, including brain-derived neurotrophic factor, ten-eleven translocation family proteins, and fat mass and obesity-associated protein based on their prevalence and pathoetiologic role in post-stroke depression.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
9
|
Correia AS, Marques L, Cardoso A, Vale N. Exploring the Role of Drug Repurposing in Bridging the Hypoxia-Depression Connection. MEMBRANES 2023; 13:800. [PMID: 37755222 PMCID: PMC10537732 DOI: 10.3390/membranes13090800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
High levels of oxidative stress are implicated in hypoxia, a physiological response to low levels of oxygen. Evidence supports a connection between this response and depression. Previous studies indicate that tryptophan hydroxylase can be negatively affected in hypoxia, impairing serotonin synthesis and downstream pathways. Some studies also hypothesize that increasing hypoxia-inducible factor-1 (HIF-1) levels may be a new therapeutic modality for depression. Hence, this study delved into the influence of hypoxia on the cellular response to drugs designed to act in depression. By the induction of hypoxia in SH-SY5Y cells through a hypoxia incubator chamber or Cobalt Chloride treatment, the effect of Mirtazapine, an antidepressant, and other drugs that interact with serotonin receptors (TCB-2, Dextromethorphan, Ketamine, Quetiapine, Scopolamine, Celecoxib, and Lamotrigine) on SH-SY5Y cellular viability and morphology was explored. The selection of drugs was initially conducted by literature search, focusing on compounds with established potential for employment in depression therapy. Subsequently, we employed in silico approaches to forecast their ability to traverse the blood-brain barrier (BBB). This step was particularly pertinent as we aimed to assess their viability for inducing potential antidepressant effects. The effect of these drugs in hypoxia under the inhibition of HIF-1 by Echinomycin was also tested. Our results revealed that all the potential repurposed drugs promoted cell viability, especially when hypoxia was chemically induced. When combined with Echinomycin, all drugs decreased cellular viability, possibly by the inability to interact with HIF-1.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
10
|
Aslan E, Demir B, Ulusal H, Şahin Ş, Taysi S, Elboğa G, Altındağ A. Sestrin-2 and hypoxia-ınducible factor-1 alpha levels in major depressive disorder and its subtypes. Psychopharmacology (Berl) 2023; 240:1691-1704. [PMID: 37308575 DOI: 10.1007/s00213-023-06402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The objective of this study is to measure the levels of sestrin-2 (SESN2) and hypoxia-inducible factor-1 alpha (HIF-1α), which can be determinants in the relevant physiopathology and etiology, assessment of the clinical severity, and identification of new treatment targets in major depressive disorder (MDD) and its subtypes. METHODS A total of 230 volunteers, including 153 patients diagnosed with MDD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and 77 healthy controls, were included in the study. Of the MDD patients included in the study, 40 had melancholic features, 40 had anxious distress features, 38 had atypical features, and the remaining 35 had psychotic features. All participants were administered the Beck's Depression Inventory (BDI) and Clinical Global Impressions-Severity (CGI-S) scale. Serum SESN2 and HIF-1α levels of the participants were measured using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS The HIF-1α and SESN2 values of the patient group were found to be significantly lower than those of the control group (p < 0.05). The HIF-1α and SESN2 values were significantly lower in patients with melancholic, anxious distress, and atypical features compared to the control group (p < 0.05). The HIF-1α and SESN2 levels did not differ significantly between patients with psychotic features and the control group (p > 0.05). CONCLUSION The findings of the study suggested that knowledge of SESN2 and HIF-1α levels may contribute to the explanation of the etiology of MDD, objective assessment of the severity of the disease, and identification of new treatment targets.
Collapse
Affiliation(s)
- Esra Aslan
- Department of Psychiatry, Aksaray Training and Research Hospital, Aksaray, Turkey.
| | - Bahadır Demir
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şengül Şahin
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Gülçin Elboğa
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdurrahman Altındağ
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Gilder D, Bernert R, Karriker-Jaffe K, Ehlers C, Peng Q. Genetic Factors Associated with Suicidal Behaviors and Alcohol Use Disorders in an American Indian Population. RESEARCH SQUARE 2023:rs.3.rs-2950284. [PMID: 37398076 PMCID: PMC10312956 DOI: 10.21203/rs.3.rs-2950284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
American Indians (AI) demonstrate the highest rates of both suicidal behaviors (SB) and alcohol use disorders (AUD) among all ethnic groups in the US. Rates of suicide and AUD vary substantially between tribal groups and across different geographical regions, underscoring a need to delineate more specific risk and resilience factors. Using data from over 740 AI living within eight contiguous reservations, we assessed genetic risk factors for SB by investigating: (1) possible genetic overlap with AUD, and (2) impacts of rare and low frequency genomic variants. Suicidal behaviors included lifetime history of suicidal thoughts and acts, including verified suicide deaths, scored using a ranking variable for the SB phenotype (range 0-4). We identified five loci significantly associated with SB and AUD, two of which are intergenic and three intronic on genes AACSP1, ANK1, and FBXO11. Nonsynonymous rare mutations in four genes including SERPINF1 (PEDF), ZNF30, CD34, and SLC5A9, and non-intronic rare mutations in genes OPRD1, HSD17B3 and one lincRNA were significantly associated with SB. One identified pathway related to hypoxia-inducible factor (HIF) regulation, whose 83 nonsynonymous rare variants on 10 genes were significantly linked to SB as well. Four additional genes, and two pathways related to vasopressin-regulated water metabolism and cellular hexose transport, also were strongly associated with SB. This study represents the first investigation of genetic factors for SB in an American Indian population that has high risk for suicide. Our study suggests that bivariate association analysis between comorbid disorders can increase statistical power; and rare variant analysis in a high-risk population enabled by whole-genome sequencing has the potential to identify novel genetic factors. Although such findings may be population specific, rare functional mutations relating to PEDF and HIF regulation align with past reports and suggest a biological mechanism for suicide risk and a potential therapeutic target for intervention.
Collapse
|
12
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Latent class analysis of psychotic-affective disorders with data-driven plasma proteomics. Transl Psychiatry 2023; 13:44. [PMID: 36746927 PMCID: PMC9902608 DOI: 10.1038/s41398-023-02321-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Data-driven approaches to subtype transdiagnostic samples are important for understanding heterogeneity within disorders and overlap between disorders. Thus, this study was conducted to determine whether plasma proteomics-based clustering could subtype patients with transdiagnostic psychotic-affective disorder diagnoses. The study population included 504 patients with schizophrenia, bipolar disorder, and major depressive disorder and 160 healthy controls, aged 19 to 65 years. Multiple reaction monitoring was performed using plasma samples from each individual. Pathologic peptides were determined by linear regression between patients and healthy controls. Latent class analysis was conducted in patients after peptide values were stratified by sex and divided into tertile values. Significant demographic and clinical characteristics were determined for the latent clusters. The latent class analysis was repeated when healthy controls were included. Twelve peptides were significantly different between the patients and healthy controls after controlling for significant covariates. Latent class analysis based on these peptides after stratification by sex revealed two distinct classes of patients. The negative symptom factor of the Brief Psychiatric Rating Scale was significantly different between the classes (t = -2.070, p = 0.039). When healthy controls were included, two latent classes were identified, and the negative symptom factor of the Brief Psychiatric Rating Scale was still significant (t = -2.372, p = 0.018). In conclusion, negative symptoms should be considered a significant biological aspect for understanding the heterogeneity and overlap of psychotic-affective disorders.
Collapse
|
14
|
Hypoxia-Inducible Factor 1 and Mitochondria: An Intimate Connection. Biomolecules 2022; 13:biom13010050. [PMID: 36671435 PMCID: PMC9855368 DOI: 10.3390/biom13010050] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The general objective of the review is to explain the interaction between HIF-1 and mitochondria. On the one hand, this review describes the effects of HIF-1 on mitochondrial structure, including quantity, distribution, and morphology, as well as on mitochondrial metabolism and respiratory function. On the other hand, various factors, including mitochondrial activation of enzymes, the respiratory chain, complex and decoupling proteins, affect the stability and activity of HIF-1. It is possible to develop future molecular therapeutic interventions by understanding the interrelationships between HIF-1 and mitochondria.
Collapse
|
15
|
Hif-1α regulates Tet1-c-Myc binding involved in depression-like behavior in prenatal hypoxia offspring. Neuroscience 2022; 502:41-51. [PMID: 36041588 DOI: 10.1016/j.neuroscience.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Prenatal hypoxia (PH) is one of the most common adverse stimulation during pregnancy. The brain is fragile in the fetal period and sensitive to hypoxia. The offspring who have experienced PH may be at increased risk of developing neurodevelopmental disorders after birth and various neuropsychiatric diseases after adulthood. In this study, pregnant mice used to generate PH offspring were treated with hypoxia (10.5% oxygen) from gestational day 12.5 to 17.5. Compared with control mice, the birth weight of offspring in the PH group was significantly lower and the male adult offspring exhibited significant depression-like behavior. The expression of the oxygen-sensitive subunit of hypoxia-inducible factor (Hif-1α) was significantly elevated, whereas Ten-eleven translocated methylcytosine dioxygenase 1 (Tet1) and c-Myc, which is closely related to cell proliferation, was significantly decreased in the hippocampus of the male offspring in the PH group. In addition, the PH group showed increased binding of Hif-1α to Tet1, and decreased binding of Tet1 to c-Myc, resulting in increased ubiquitinated degradation of c-Myc and decreased neurogenesis in the hippocampus of the male offspring. These findings suggest that Hif-1α regulates Tet1-c-Myc binding involved in depression-like behavior in PH offspring and Hif-1α can be used as a detection index of stress-related diseases.
Collapse
|
16
|
Hu L, Wang J, Zhao X, Cai D. Mechanism of saikogenin G against major depressive disorder determined by network pharmacology. Medicine (Baltimore) 2022; 101:e30193. [PMID: 36042622 PMCID: PMC9410695 DOI: 10.1097/md.0000000000030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many classic decoctions of Chinese medicine including Radix Bupleuri are used to treat major depressive disorder (MDD). Saikosaponin D is a representative bioactive ingredient discovered in Radix Bupleuri. The mechanism of saikogenin G (SGG) as a metabolite in MDD remains unclear to date. This study aims to elucidate the mechanism of SGG in treating MDD with network pharmacology. We evaluated the drug likeness of SGG with SwissADME web tool and predicted its targets using the SwissTargetPrediction and PharmMapper. MDD-related targets were identified from the following databases: DisGeNET, DrugBank, Online Mendelian Inheritance in Man, and GeneCards. The common targets of SGG and MDD were imported to the STRING11.0 database, and then a protein-protein interaction network was constructed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were analyzed with DAVID 6.8 database. The molecular weight of SGG was 472.7 g/mol, the topological polar surface area was 69.92 A2 <140 A2, the octanol/water partition coefficient (Consensus LogP0/W) was 4.80, the rotatable bond was 1, the hydrogen bond donors was 3, and the hydrogen bond acceptors was 4. A total of 322 targets of SGG were obtained and there were 1724 MDD-related targets. A total of 78 overlapping genes were selected as targets of MDD treatment including albumin, insulin-like growth factor I, mitogen-activated protein kinase 1, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that proteoglycans in cancer, pathways in cancer, prostate cancer, hypoxia-inducible factor-1, central carbon metabolism in cancer, estrogen, PI3K-Akt, ErbB, Rap1, and prolactin signaling pathways played an important role(P < .0001). This study showed that SGG exhibits good drug-like properties and elucidated the potential mechanisms of SGG in treating MDD with regulating inflammation, energy metabolism, monoamine neurotransmitters, neuroplasticity, phosphocreatine-creatine kinase circuits, and so on.
Collapse
Affiliation(s)
- Lili Hu
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- *Correspondence: Lili Hu, College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong 030619, China (e-mail: )
| | - Jue Wang
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Donghui Cai
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
17
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
18
|
Functional Genomics Analysis to Disentangle the Role of Genetic Variants in Major Depression. Genes (Basel) 2022; 13:genes13071259. [PMID: 35886042 PMCID: PMC9320424 DOI: 10.3390/genes13071259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular basis of major depression is critical for identifying new potential biomarkers and drug targets to alleviate its burden on society. Leveraging available GWAS data and functional genomic tools to assess regulatory variation could help explain the role of major depression-associated genetic variants in disease pathogenesis. We have conducted a fine-mapping analysis of genetic variants associated with major depression and applied a pipeline focused on gene expression regulation by using two complementary approaches: cis-eQTL colocalization analysis and alteration of transcription factor binding sites. The fine-mapping process uncovered putative causally associated variants whose proximal genes were linked with major depression pathophysiology. Four colocalizing genetic variants altered the expression of five genes, highlighting the role of SLC12A5 in neuronal chlorine homeostasis and MYRF in nervous system myelination and oligodendrocyte differentiation. The transcription factor binding analysis revealed the potential role of rs62259947 in modulating P4HTM expression by altering the YY1 binding site, altogether regulating hypoxia response. Overall, our pipeline could prioritize putative causal genetic variants in major depression. More importantly, it can be applied when only index genetic variants are available. Finally, the presented approach enabled the proposal of mechanistic hypotheses of these genetic variants and their role in disease pathogenesis.
Collapse
|
19
|
Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci 2022; 16:941740. [PMID: 35801184 PMCID: PMC9254677 DOI: 10.3389/fnins.2022.941740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
This review is devoted to the phenomenon of intermittent hypoxic training and is aimed at drawing the attention of researchers to the necessity of studying the mechanisms mediating the positive, particularly neuroprotective, effects of hypoxic training at the molecular level. The review briefly describes the historical aspects of studying the beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training and their effectiveness are summarized, giving examples of their beneficial effects in various organs including the brain. The review emphasizes a high, far from being realized at present, potential of hypoxic training in preventive and clinical medicine especially in the area of neurodegeneration and age-related cognitive decline.
Collapse
Affiliation(s)
- Elena A. Rybnikova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- *Correspondence: Elena A. Rybnikova,
| | - Natalia N. Nalivaeva
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail Y. Zenko
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| | - Ksenia A. Baranova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
20
|
Li Y, Wang ML, Zhang B, Fan XX, Tang Q, Yu X, Li LN, Fan AR, Chang HS, Zhang LZ. Antidepressant-Like Effect and Mechanism of Ginsenoside Rd on Rodent Models of Depression. Drug Des Devel Ther 2022; 16:843-861. [PMID: 35370402 PMCID: PMC8974469 DOI: 10.2147/dddt.s351421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is growing evidence to suggest that ginsenoside Rd (GRd) has a therapeutic effect on depression, but the specific mechanisms behind its activity require further study. OBJECTIVE This study is designed to investigate the antidepressant-like effect and underlying mechanisms of GRd. METHODS In this study, the behavioral despair mouse model of depression and chronic unpredictable mild stress (CUMS) rat model of depression were established to explore the effects of GRd on depression-like behavior and its underlying mechanisms. Behavioral tests were used to evaluate the replication of animal models and depression-like behaviors. The hypoxia-inducible factor-1α (HIF-1α) blocker 2-methoxyestradiol (2-ME) was injected to determine the role of HIF-1α in the antidepressant-like effect of GRd. In addition, molecular biology techniques were used to determine the mRNA and protein expression of HIF-1ɑ signaling pathway and synaptic plasticity-related regulators, that is synapsin 1 (SYN 1) and postsynaptic density protein 95 (PSD 95). In silico binding interaction studies of GRd with focused target proteins were performed using molecular docking to predict the affinity and optimal binding mode between ligands and receptors. RESULTS Our data show that GRd significantly reversed depression-like behavior and promoted mRNA and protein expression of HIF-1ɑ signaling pathway and synaptic plasticity-related regulators. However, the antidepressant-like effect of GRd disappeared upon inhibition of HIF-1α expression following administration of 2-ME. Furthermore, molecular docking results showed that GRd possessed significant binding affinity for HIF-1α, VEGF, and VEGFR-2. CONCLUSION Our results show that GRd exhibits significant antidepressant-like effect and that HIF-1α signaling pathway is a promising target for the treatment of depression.
Collapse
Affiliation(s)
- Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Mei-Ling Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Bo Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xue Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Li-Na Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Ang-Ran Fan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Lan-Zhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
21
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
22
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
23
|
Tang Y, Su H, Wang H, Lu F, Nie K, Wang Z, Huang W, Dong H. The effect and mechanism of Jiao-tai-wan in the treatment of diabetes mellitus with depression based on network pharmacology and experimental analysis. Mol Med 2021; 27:154. [PMID: 34875999 PMCID: PMC8650382 DOI: 10.1186/s10020-021-00414-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) and depression is increasing year by year around the world, bringing a serious burden to patients and their families. Jiao-tai-wan (JTW), a well-known traditional Chinese medicine (TCM), has been approved to have hypoglycemic and antidepressant effects, respectively, but whether JTW has such dual effects and its potential mechanisms is still unknown. This study is to evaluate the dual therapeutic effects of JTW on chronic restraint stress (CRS)-induced DM combined with depression mice, and to explore the underlying mechanisms through network pharmacology. METHODS CRS was used on db/db mice for 21 days to induce depression-like behaviors, so as to obtain the DM combined with depression mouse model. Mice were treated with 0.9% saline (0.1 ml/10 g), JTW (3.2 mg/kg) and Fluoxetine (2.0 mg/kg), respectively. The effect of JTW was accessed by measuring fasting blood glucose (FBG) levels, conducting behavioral tests and observing histopathological change. The ELISA assay was used to evaluate the levels of inflammatory cytokines and the UHPLC-MS/MS method was used to determine the depression-related neurotransmitters levels in serum. The mechanism exploration of JTW against DM and depression were performed via a network pharmacological method. RESULTS The results of blood glucose measurement showed that JTW has a therapeutic effect on db/db mice. Behavioral tests and the levels of depression-related neurotransmitters proved that JTW can effectively ameliorate depression-like symptoms in mice induced by CRS. In addition, JTW can also improve the inflammatory state and reduce the number of apoptotic cells in the hippocampus. According to network pharmacology, 28 active compounds and 484 corresponding targets of JTW, 1407 DM targets and 1842 depression targets were collected by screening the databases, and a total of 117 targets were obtained after taking the intersection. JTW plays a role in reducing blood glucose level and antidepressant mainly through active compounds such as quercetin, styrene, cinnamic acid, ethyl cinnamate, (R)-Canadine, palmatine and berberine, etc., the key targets of its therapeutic effect include INS, AKT1, IL-6, VEGF-A, TNF and so on, mainly involved in HIF-1 signal pathway, pathways in cancer, Hepatitis B, TNF signal pathway, PI3K-Akt signal pathway and MAPK signaling pathway, etc. CONCLUSION: Our experimental study showed that JTW has hypoglycemic and antidepressant effects. The possible mechanism was explored by network pharmacology, reflecting the characteristics of multi-component, multi-target and multi-pathway, which provides a theoretical basis for the experimental research and clinical application of JTW in the future.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|