1
|
Mohanto N, Mondal H, Park YJ, Jee JP. Therapeutic delivery of oxygen using artificial oxygen carriers demonstrates the possibility of treating a wide range of diseases. J Nanobiotechnology 2025; 23:25. [PMID: 39827150 PMCID: PMC11742488 DOI: 10.1186/s12951-024-03060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic. However, there is a pressing need to formulate stable, non-toxic, and immunologically inert oxygen carriers. Even though numerous challenges are encountered in the development of artificial oxygen carriers, their applicability extends to various medical treatments, encompassing elective and cardiovascular surgeries, hemorrhagic shock, decompression illness, acute stroke, myocardial infarction, sickle cell crisis, and proficient addressing conditions such as cerebral hypoxia. Therefore, this paper provides an overview of therapeutic oxygen delivery using assorted types of artificial oxygen carriers, including hemoglobin-based, perfluorocarbon-based, stem cell-derived, and oxygen micro/nanobubbles, in the treatment of diverse disease models. Additionally, it discusses the potential side effects and limitations associated with these interventions, while incorporating completed and ongoing research and recent clinical developments. Finally, the prospective solutions and general demands of the perfect artificial oxygen carriers were anticipated to be a reference for subsequent research endeavors.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Zhang Q, Ma YX, Dai Z, Zhang B, Liu SS, Li WX, Fu CQ, Wang QM, Yin W. Tracking Research on Hemoglobin-Based Oxygen Carriers: A Scientometric Analysis and In-Depth Review. Drug Des Devel Ther 2023; 17:2549-2571. [PMID: 37645624 PMCID: PMC10461757 DOI: 10.2147/dddt.s422770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Numerous studies on the formulation and clinical applications of novel hemoglobin-based oxygen carriers (HBOCs) are reported in the scientific literature. However, there are fewer scientometric analysis related to HBOCs. Here, we illustrate recent studies on HBOCs using both a scientometric analysis approach and a scope review method. We used the former to investigate research on HBOCs from 1991 to 2022, exploring the current hotspots and research trends, and then we comprehensively analyzed the relationship between concepts based on the keyword analysis. The evolution of research fields, knowledge structures, and research topics in which HBOCs located are revealed by scientometric analysis. The elucidation of type, acting mechanism, potential clinical practice, and adverse effects of HBOCs helps to clarify the prospects of this biological agent. Scientometrics analyzed 1034 publications in this research field, and these findings provide a promising roadmap for further study.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yue-Xiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zheng Dai
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Bin Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Shan-Shou Liu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Wen-Xiu Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Chuan-Qing Fu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Qian-Mei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
3
|
Pereira LF, Dallagnol CA, Moulepes TH, Hirota CY, Kutsmi P, dos Santos LV, Pirich CL, Picheth GF. Oxygen therapy alternatives in COVID-19: From classical to nanomedicine. Heliyon 2023; 9:e15500. [PMID: 37089325 PMCID: PMC10106793 DOI: 10.1016/j.heliyon.2023.e15500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Around 10-15% of COVID-19 patients affected by the Delta and the Omicron variants exhibit acute respiratory insufficiency and require intensive care unit admission to receive advanced respiratory support. However, the current ventilation methods display several limitations, including lung injury, dysphagia, respiratory muscle atrophy, and hemorrhage. Furthermore, most of the ventilatory techniques currently offered require highly trained professionals and oxygen cylinders, which may attain short supply owing to the high demand and misuse. Therefore, the search for new alternatives for oxygen therapeutics has become extremely important for maintaining gas exchange in patients affected by COVID-19. This review highlights and suggest new alternatives based on micro and nanostructures capable of supplying oxygen and/or enabling hematosis during moderate or acute COVID-19 cases.
Collapse
Affiliation(s)
- Luis F.T. Pereira
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Camila A. Dallagnol
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Tassiana H. Moulepes
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Clara Y. Hirota
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Pedro Kutsmi
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Lucas V. dos Santos
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Cleverton L. Pirich
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F. Picheth
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Chen L, Yang Z, Liu H. Hemoglobin-Based Oxygen Carriers: Where Are We Now in 2023? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020396. [PMID: 36837597 PMCID: PMC9962799 DOI: 10.3390/medicina59020396] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The pursuit for blood a substitute has spanned over a century, but a majority of the efforts have been disappointing. As of today, there is no widely accepted product used as an alternative to human blood in clinical settings with severe anemic condition(s). Blood substitutes are currently also termed oxygen therapeutics. There are two major categories of oxygen therapeutics, hemoglobin-based and perfluorocarbon-based products. In this article, we reviewed the most developed but failed products and products still in active clinical research in the category of hemoglobin-based oxygen carriers. Among all of the discussed hemoglobin-based oxygen therapeutics, HemAssist, PolyHeme, Hemolink, Hemospan, and Hemoximer were discontinued. Hemopure is in clinical use in South Africa and Russia. Oxyglobin, the sister product of Hemopure, has been approved for veterinary use in the European Union and the United States. HemO2life has recently been approved for organ preservation in organ transplantation in the European Union. OxyVita and Sanguinate are still undergoing active clinical studies. The field of oxygen therapeutics seems to be entering a phase of rapid growth in the coming 10-20 years.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Hubei Women & Children’s Hospital, 745 Wuluo Road, Hongshan, Wuhan 430070, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Embryogenic Disease, Shanghai Municipal Key Clinical Specialty, 1961 Huashan Road, Shanghai 200030, China
| | - Henry Liu
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
5
|
Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:153-190. [PMID: 35935469 PMCID: PMC9344254 DOI: 10.1007/s40005-022-00590-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
6
|
Li S, Sun W, Ouyang M, Yu B, Chen Y, Wang Y, Zhou D. Hemoglobin‐Related Biomaterials and their Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shaobing Li
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Wei Sun
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Min Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Bo Yu
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yan Chen
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yupeng Wang
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
7
|
Drvenica IT, Stančić AZ, Maslovarić IS, Trivanović DI, Ilić VL. Extracellular Hemoglobin: Modulation of Cellular Functions and Pathophysiological Effects. Biomolecules 2022; 12:1708. [PMID: 36421721 PMCID: PMC9688122 DOI: 10.3390/biom12111708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Hemoglobin is essential for maintaining cellular bioenergetic homeostasis through its ability to bind and transport oxygen to the tissues. Besides its ability to transport oxygen, hemoglobin within erythrocytes plays an important role in cellular signaling and modulation of the inflammatory response either directly by binding gas molecules (NO, CO, and CO2) or indirectly by acting as their source. Once hemoglobin reaches the extracellular environment, it acquires several secondary functions affecting surrounding cells and tissues. By modulating the cell functions, this macromolecule becomes involved in the etiology and pathophysiology of various diseases. The up-to-date results disclose the impact of extracellular hemoglobin on (i) redox status, (ii) inflammatory state of cells, (iii) proliferation and chemotaxis, (iv) mitochondrial dynamic, (v) chemoresistance and (vi) differentiation. This review pays special attention to applied biomedical research and the use of non-vertebrate and vertebrate extracellular hemoglobin as a promising candidate for hemoglobin-based oxygen carriers, as well as cell culture medium additive. Although recent experimental settings have some limitations, they provide additional insight into the modulatory activity of extracellular hemoglobin in various cellular microenvironments, such as stem or tumor cells niches.
Collapse
Affiliation(s)
- Ivana T. Drvenica
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Ana Z. Stančić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Irina S. Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Drenka I. Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Vesna Lj. Ilić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| |
Collapse
|
8
|
Ghaith HS, Gabra MD, Nafady MH, Elshawah HE, Negida A, Mushtaq G, Kamal MA. A Review of the Rational and Current Evidence on Colchicine for COVID-19. Curr Pharm Des 2022; 28:3194-3201. [PMID: 34895117 DOI: 10.2174/1381612827666211210142352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
The current coronavirus disease (COVID-19) pandemic has affected millions of individuals worldwide. Despite extensive research efforts, few therapeutic options currently offer direct clinical benefits for COVID-19 patients. Despite the advances in our understanding of COVID-19, the mortality rates remain significantly high owing to the high viral transmission rates in several countries and the rise of various mutations in the SARS-CoV-2. One currently available and widely used drug that combines both anti-inflammatory and immunomodulatory actions is colchicine, which has been proposed as a possible treatment option for COVID-19. Colchicine still did not get much attention from the medical and scientific communities despite its antiinflammatory and immunomodulatory mechanisms of action and positive preliminary data from early trials. This literature review article provides the scientific rationale for repurposing colchicine as a potential therapy for COVID-19. Further, we summarize colchicine's mechanisms of action and possible roles in COVID-19 patients. Finally, we supplement this review with a summary of the doses, side effects, and early efficacy data from clinical trials to date. Despite the promising early findings from multiple observational and clinical trials about the potential of colchicine in COVID-19, the data from the RECOVERY trial, the largest COVID-19 randomized controlled trial (RCT) in the world, showed no evidence of clinical benefits in mortality, hospital stays, or disease progression (n = 11340 patients). However, multiple other smaller clinical trials showed significant clinical benefits. We conclude that while current evidence does not support the use of colchicine for treating COVID-19, the present body of evidence is heterogeneous and inconclusive. The drug cannot be used in clinical practice or abandoned from clinical research without additional large RCTs providing more robust evidence. At present, the drug should not be used except for investigational purposes.
Collapse
Affiliation(s)
| | | | - Mohamed H Nafady
- Faculty of Applied Medical Sciences, Misr University of Science and Technology, 6th October City, Egypt
| | | | - Ahmed Negida
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Syria
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
9
|
Ashktorab H, Pizuorno A, Adeleye F, Laiyemo A, Dalivand MM, Aduli F, Sherif ZA, Oskrochi G, Angesom K, Oppong-Twene P, Challa SR, Okorie N, Moon ES, Romos E, Jones-Wonni B, Kone AM, Rankine S, Thrift C, Scholes D, Ekwunazu C, Banson A, Mitchell B, Maskalo G, Ross J, Curtis J, Kim R, Gilliard C, Ahuja G, Mathew J, Gavin W, Kara A, Hache-Marliere M, Palaiodimos L, Mani VR, Kalabin A, Gayam VR, Garlapati PR, Miller J, Chirumamilla LG, Jackson F, Carethers JM, Kamangar F, Brim H. Symptomatic, clinical and biomarker associations for mortality in hospitalized COVID-19 patients enriched for African Americans. BMC Infect Dis 2022; 22:552. [PMID: 35715729 PMCID: PMC9204073 DOI: 10.1186/s12879-022-07520-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS Initial reports on US COVID-19 showed different outcomes in different races. In this study we use a diverse large cohort of hospitalized COVID-19 patients to determine predictors of mortality. METHODS We analyzed data from hospitalized COVID-19 patients (n = 5852) between March 2020- August 2020 from 8 hospitals across the US. Demographics, comorbidities, symptoms and laboratory data were collected. RESULTS The cohort contained 3,662 (61.7%) African Americans (AA), 286 (5%) American Latinx (LAT), 1,407 (23.9%), European Americans (EA), and 93 (1.5%) American Asians (AS). Survivors and non-survivors mean ages in years were 58 and 68 for AA, 58 and 77 for EA, 44 and 61 for LAT, and 51 and 63 for AS. Mortality rates for AA, LAT, EA and AS were 14.8, 7.3, 16.3 and 2.2%. Mortality increased among patients with the following characteristics: age, male gender, New York region, cardiac disease, COPD, diabetes mellitus, hypertension, history of cancer, immunosuppression, elevated lymphocytes, CRP, ferritin, D-Dimer, creatinine, troponin, and procalcitonin. Use of mechanical ventilation (p = 0.001), shortness of breath (SOB) (p < 0.01), fatigue (p = 0.04), diarrhea (p = 0.02), and increased AST (p < 0.01), significantly correlated with death in multivariate analysis. Male sex and EA and AA race/ethnicity had higher frequency of death. Diarrhea was among the most common GI symptom amongst AAs (6.8%). When adjusting for comorbidities, significant variables among the demographics of study population were age (over 45 years old), male sex, EA, and patients hospitalized in New York. When adjusting for disease severity, significant variables were age over 65 years old, male sex, EA as well as having SOB, elevated CRP and D-dimer. Glucocorticoid usage was associated with an increased risk of COVID-19 death in our cohort. CONCLUSION Among this large cohort of hospitalized COVID-19 patients enriched for African Americans, our study findings may reflect the extent of systemic organ involvement by SARS-CoV-2 and subsequent progression to multi-system organ failure. High mortality in AA in comparison with LAT is likely related to high frequency of comorbidities and older age among AA. Glucocorticoids should be used carefully considering the poor outcomes associated with it. Special focus in treating patients with elevated liver enzymes and other inflammatory biomarkers such as CRP, troponin, ferritin, procalcitonin, and D-dimer are required to prevent poor outcomes.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA.
| | - Antonio Pizuorno
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Folake Adeleye
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Adeyinka Laiyemo
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Maryam Mehdipour Dalivand
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Farshad Aduli
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Zaki A Sherif
- Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, USA
| | - Gholamreza Oskrochi
- College of Engineering and Technology, American University of the Middle East, Salmiya, Kuwait
| | - Kibreab Angesom
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Philip Oppong-Twene
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Suryanarayana Reddy Challa
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Nnaemeka Okorie
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Esther S Moon
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Edward Romos
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Boubini Jones-Wonni
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Abdoul Madjid Kone
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Sheldon Rankine
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Camelita Thrift
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Derek Scholes
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Chiamaka Ekwunazu
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Abigail Banson
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Brianna Mitchell
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Guttu Maskalo
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Jillian Ross
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Julencia Curtis
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Rachel Kim
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Chandler Gilliard
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Geeta Ahuja
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Joseph Mathew
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Warren Gavin
- Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Areeba Kara
- Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Vishnu R Mani
- Department of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, NC, USA
| | - Aleksandr Kalabin
- Dartment of Surgery, Columbia University College of Physicians and Surgeons at Harlem Hospital, New York, NY, USA
| | - Vijay Reddy Gayam
- Department of Medicine, Interfaith Medical Center, New York, NY, USA
| | | | - Joseph Miller
- Departments of Emergency Medicine and Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Lakshmi Gayathri Chirumamilla
- Department of Medicine, GI Division, Cancer Center, Howard University Hospital, 2041 Georgia Avenue, N.W., Washington, DC, USA
| | - Fatimah Jackson
- Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, USA
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Hassan Brim
- Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
10
|
Alayash AI. The Impact of COVID-19 Infection on Oxygen Homeostasis: A Molecular Perspective. Front Physiol 2021; 12:711976. [PMID: 34690793 PMCID: PMC8532809 DOI: 10.3389/fphys.2021.711976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus (2019-nCoV/SARS-CoV-2) causes respiratory symptoms including a substantial pulmonary dysfunction with worsening arterial hypoxemia (low blood oxygenation), eventually leading to acute respiratory distress syndrome (ARDS). The impact of the viral infection on blood oxygenation and other elements of oxygen homeostasis, such as oxygen sensing and respiratory mitochondrial mechanisms, are not well understood. As a step toward understanding these mechanisms in the context of COVID-19, recent experiments revealed contradictory data on the impact of COVID-19 infection on red blood cells (RBCs) oxygenation parameters. However, structural protein damage and membrane lipid remodeling in RBCs from COVID-19 patients that may impact RBC function have been reported. Moreover, COVID-19 infection could potentially disrupt one, if not all, of the other major pathways of homeostasis. Understanding the nature of the crosstalk among normal homeostatic pathways; oxygen carrying, oxygen sensing (i.e., hypoxia inducible factor, HIF) proteins, and the mitochondrial respiratory machinery may provide a target for therapeutic interventions.
Collapse
Affiliation(s)
- Abdu I Alayash
- Division of Blood and Devices (DBCD), United States Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
11
|
Cap AP, Cannon JW, Reade MC. Synthetic blood and blood products for combat casualty care and beyond. J Trauma Acute Care Surg 2021; 91:S26-S32. [PMID: 34324470 DOI: 10.1097/ta.0000000000003248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Synthetic biology adopts an engineering design approach to create innovative treatments that are reliable, scalable, and customizable to individual patients. Interest in substitutes for allogenic blood components, primarily red blood cells and platelets, increased in the 1980s because of concerns over infectious disease transmission. However, only now, with emerging synthetic approaches, are such substitutes showing genuine promise. Affordable alternatives to donated blood would be of enormous benefit worldwide. Several approaches to replacing the oxygen-carrying function of red cells are under advanced investigation. Hemoglobin-based oxygen carriers incorporate modifications to reduce the renal toxicity and nitric oxide scavenging of free hemoglobin. While use of earlier-generation hemoglobin-based oxygen carriers may be limited to circumstances in which blood transfusion is not an option, recent advances in chemical modification of hemoglobin may eventually overcome such problems. Another approach encases hemoglobin molecules in biocompatible synthetic nanoparticles. An alternative is the ex vivo production of red cells in bioreactors, with or without genetic manipulation, that offers the potential of a universal donor product. Various strategies to manufacture synthetic platelets are also underway, ranging from simple phospholipid liposomes encapsulating adenosine diphosphate and decorated with fibrinogen fragments, to more complex capsules with multiple receptor peptide sequences. Ex vivo production of platelets in bioreactors is also possible including, for example, platelets derived from induced pluripotent stem cells that are differentiated into a megakaryocytic lineage. Prior to clinical use, trials assessing synthetic blood components must evaluate meaningful safety and effectiveness outcomes in relatively large numbers of critically ill patients. Overcoming these challenges may be as much a hurdle as product design. This article reviews the state of the science of the synthetic biology approach to developing blood component substitutes.
Collapse
Affiliation(s)
- Andrew P Cap
- From the US Army Institute of Surgical Research (A.P.C.), For Sam Houston, Texas; Uniformed Services University (A.P.C., J.W.C.), Bethesda, Maryland; Division of Traumatology, Surgical Critical Care & Emergency Surgery (J.W.C.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Joint Health Command (M.C.R.), Australian Defence Force, Canberra; Faculty of Medicine (M.C.R.), University of Queensland, Brisbane; and Royal Brisbane and Women's Hospital (M.C.R.), Brisbane, Australia
| | | | | |
Collapse
|
12
|
Therapeutic Potential of Hemoglobin Derived from the Marine Worm Arenicola marina (M101): A Literature Review of a Breakthrough Innovation. Mar Drugs 2021; 19:md19070376. [PMID: 34210070 PMCID: PMC8304559 DOI: 10.3390/md19070376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 01/19/2023] Open
Abstract
Oxygen (O2) is indispensable for aerobic respiration and cellular metabolism. In case of injury, reactive oxygen species are produced, causing oxidative stress, which triggers cell damaging chemical mediators leading to ischemic reperfusion injuries (IRI). Sufficient tissue oxygenation is necessary for optimal wound healing. In this context, several hemoglobin-based oxygen carriers have been developed and tested, especially as graft preservatives for transplant procedures. However, most of the commercially available O2 carriers increase oxidative stress and show some adverse effects. Interestingly, the hemoglobin derived from the marine lugworm Arenicola marina (M101) has been presented as an efficient therapeutic O2 carrier with potential anti-inflammatory, anti-bacterial, and antioxidant properties. Furthermore, it has demonstrated promise as a supplement to conventional organ preservatives by reducing IRI. This review summarizes the properties and various applications of M101. M101 is an innovative oxygen carrier with several beneficial therapeutic properties, and further research must be carried out to determine its efficacy in the management of different pathologies.
Collapse
|
13
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|